R. McMasters, F. de Monte, Giampaolo D’Alessandro, J. Beck
{"title":"Biot数对广义热传导溶液的影响","authors":"R. McMasters, F. de Monte, Giampaolo D’Alessandro, J. Beck","doi":"10.1115/1.4062637","DOIUrl":null,"url":null,"abstract":"\n Analytical solutions for thermal conduction problems are extremely important, particularly for verification of numerical codes. Temperatures and heat fluxes can be calculated very precisely, normally to eight or ten significant figures, even in situations involving large temperature gradients. It can be convenient to have a general analytical solution for a transient conduction problem in rectangular coordinates. The general solution is based on the principle that the three primary types of boundary conditions (prescribed temperature, prescribed heat flux, and convective) can all be handled using convective boundary conditions. A large convection coefficient closely approximates a prescribed temperature boundary condition and a very low convection coefficient closely approximates an insulated boundary condition. Since a dimensionless solution is used in this research, the effect of various values of dimensionless convection coefficients, or Biot number values, are explored.\n An understandable concern with a general analytical solution is the effect of the choice of convection coefficients on the precision of the solution, since the primary motivation for using analytical solutions is the precision offered. An investigation is made in this study to determine the effects of the choices of large and small convection coefficients on the precision of the analytical solutions generated by the general convective formulation. Results are provided, in tabular and graphical form, to illustrate the effects of the choices of convection coefficients on the precision of the general analytical solution.","PeriodicalId":15937,"journal":{"name":"Journal of Heat Transfer-transactions of The Asme","volume":"10 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Biot Number on a Generalized Heat Conduction Solution\",\"authors\":\"R. McMasters, F. de Monte, Giampaolo D’Alessandro, J. Beck\",\"doi\":\"10.1115/1.4062637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Analytical solutions for thermal conduction problems are extremely important, particularly for verification of numerical codes. Temperatures and heat fluxes can be calculated very precisely, normally to eight or ten significant figures, even in situations involving large temperature gradients. It can be convenient to have a general analytical solution for a transient conduction problem in rectangular coordinates. The general solution is based on the principle that the three primary types of boundary conditions (prescribed temperature, prescribed heat flux, and convective) can all be handled using convective boundary conditions. A large convection coefficient closely approximates a prescribed temperature boundary condition and a very low convection coefficient closely approximates an insulated boundary condition. Since a dimensionless solution is used in this research, the effect of various values of dimensionless convection coefficients, or Biot number values, are explored.\\n An understandable concern with a general analytical solution is the effect of the choice of convection coefficients on the precision of the solution, since the primary motivation for using analytical solutions is the precision offered. An investigation is made in this study to determine the effects of the choices of large and small convection coefficients on the precision of the analytical solutions generated by the general convective formulation. Results are provided, in tabular and graphical form, to illustrate the effects of the choices of convection coefficients on the precision of the general analytical solution.\",\"PeriodicalId\":15937,\"journal\":{\"name\":\"Journal of Heat Transfer-transactions of The Asme\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Heat Transfer-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062637\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heat Transfer-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062637","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
The Effect of Biot Number on a Generalized Heat Conduction Solution
Analytical solutions for thermal conduction problems are extremely important, particularly for verification of numerical codes. Temperatures and heat fluxes can be calculated very precisely, normally to eight or ten significant figures, even in situations involving large temperature gradients. It can be convenient to have a general analytical solution for a transient conduction problem in rectangular coordinates. The general solution is based on the principle that the three primary types of boundary conditions (prescribed temperature, prescribed heat flux, and convective) can all be handled using convective boundary conditions. A large convection coefficient closely approximates a prescribed temperature boundary condition and a very low convection coefficient closely approximates an insulated boundary condition. Since a dimensionless solution is used in this research, the effect of various values of dimensionless convection coefficients, or Biot number values, are explored.
An understandable concern with a general analytical solution is the effect of the choice of convection coefficients on the precision of the solution, since the primary motivation for using analytical solutions is the precision offered. An investigation is made in this study to determine the effects of the choices of large and small convection coefficients on the precision of the analytical solutions generated by the general convective formulation. Results are provided, in tabular and graphical form, to illustrate the effects of the choices of convection coefficients on the precision of the general analytical solution.
期刊介绍:
Topical areas including, but not limited to: Biological heat and mass transfer; Combustion and reactive flows; Conduction; Electronic and photonic cooling; Evaporation, boiling, and condensation; Experimental techniques; Forced convection; Heat exchanger fundamentals; Heat transfer enhancement; Combined heat and mass transfer; Heat transfer in manufacturing; Jets, wakes, and impingement cooling; Melting and solidification; Microscale and nanoscale heat and mass transfer; Natural and mixed convection; Porous media; Radiative heat transfer; Thermal systems; Two-phase flow and heat transfer. Such topical areas may be seen in: Aerospace; The environment; Gas turbines; Biotechnology; Electronic and photonic processes and equipment; Energy systems, Fire and combustion, heat pipes, manufacturing and materials processing, low temperature and arctic region heat transfer; Refrigeration and air conditioning; Homeland security systems; Multi-phase processes; Microscale and nanoscale devices and processes.