关于广义完全单调函数的泰勒-麦克劳林型的一个广义公式

B. A. Sahakyan
{"title":"关于广义完全单调函数的泰勒-麦克劳林型的一个广义公式","authors":"B. A. Sahakyan","doi":"10.46991/pysu:a/2018.52.3.172","DOIUrl":null,"url":null,"abstract":"In the paper Taylor–Maclaurin type formulas for some classes of functions are obtained. The main result of this study introduces an idea of the generalized classes of $ \\langle \\rho_j \\rangle $ completely monotone function. Under the various conditions $ \\left( \\sum\\limits_{j=1}^{\\infty} \\dfrac{1}{\\rho_j} < + \\infty ,\\ \\sum\\limits_{j=1}^{\\infty} \\dfrac{1}{\\rho_j} = + \\infty \\right) $ the terms of their representation are obtained and some related theorems are proved.","PeriodicalId":21146,"journal":{"name":"Proceedings of the YSU A: Physical and Mathematical Sciences","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON A GENERALIZED FORMULA OF TAYLOR–MACLAURIN TYPE ON THE GENERALIZED COMPLETELY MONOTONE FUNCTIONS\",\"authors\":\"B. A. Sahakyan\",\"doi\":\"10.46991/pysu:a/2018.52.3.172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper Taylor–Maclaurin type formulas for some classes of functions are obtained. The main result of this study introduces an idea of the generalized classes of $ \\\\langle \\\\rho_j \\\\rangle $ completely monotone function. Under the various conditions $ \\\\left( \\\\sum\\\\limits_{j=1}^{\\\\infty} \\\\dfrac{1}{\\\\rho_j} < + \\\\infty ,\\\\ \\\\sum\\\\limits_{j=1}^{\\\\infty} \\\\dfrac{1}{\\\\rho_j} = + \\\\infty \\\\right) $ the terms of their representation are obtained and some related theorems are proved.\",\"PeriodicalId\":21146,\"journal\":{\"name\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46991/pysu:a/2018.52.3.172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the YSU A: Physical and Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46991/pysu:a/2018.52.3.172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了一类函数的泰勒-麦克劳林型公式。本研究的主要结果引入了$ \langle \rho_j \rangle $全单调函数广义类的思想。在各种条件下$ \left( \sum\limits_{j=1}^{\infty} \dfrac{1}{\rho_j} < + \infty ,\ \sum\limits_{j=1}^{\infty} \dfrac{1}{\rho_j} = + \infty \right) $得到了它们的表示形式,并证明了一些相关定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON A GENERALIZED FORMULA OF TAYLOR–MACLAURIN TYPE ON THE GENERALIZED COMPLETELY MONOTONE FUNCTIONS
In the paper Taylor–Maclaurin type formulas for some classes of functions are obtained. The main result of this study introduces an idea of the generalized classes of $ \langle \rho_j \rangle $ completely monotone function. Under the various conditions $ \left( \sum\limits_{j=1}^{\infty} \dfrac{1}{\rho_j} < + \infty ,\ \sum\limits_{j=1}^{\infty} \dfrac{1}{\rho_j} = + \infty \right) $ the terms of their representation are obtained and some related theorems are proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信