虚自由群和虚自由积的强化Hanna Neumann猜想的一个模拟

IF 0.8 3区 数学 Q2 MATHEMATICS
A. Klyachko, A. Zakharov
{"title":"虚自由群和虚自由积的强化Hanna Neumann猜想的一个模拟","authors":"A. Klyachko, A. Zakharov","doi":"10.1307/mmj/20216105","DOIUrl":null,"url":null,"abstract":"The Friedman--Mineyev theorem, earlier known as the (strengthened) Hanna Neumann conjecture, gives a sharp estimate for the rank of the intersection of two subgroups in a free group. We obtain an analogue of this inequality for any two subgroups in a virtually free group (or, more generally, in a group containing a free product of left-orderable groups as a finite-index subgroup).","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":"95 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Analogue of the Strengthened Hanna Neumann Conjecture for Virtually Free Groups and Virtually Free Products\",\"authors\":\"A. Klyachko, A. Zakharov\",\"doi\":\"10.1307/mmj/20216105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Friedman--Mineyev theorem, earlier known as the (strengthened) Hanna Neumann conjecture, gives a sharp estimate for the rank of the intersection of two subgroups in a free group. We obtain an analogue of this inequality for any two subgroups in a virtually free group (or, more generally, in a group containing a free product of left-orderable groups as a finite-index subgroup).\",\"PeriodicalId\":49820,\"journal\":{\"name\":\"Michigan Mathematical Journal\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Michigan Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20216105\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Michigan Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20216105","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Friedman- Mineyev定理,早期被称为(强化的)Hanna Neumann猜想,给出了自由群中两个子群相交的秩的一个尖锐估计。对于虚自由群中的任意两个子群(或者,更一般地说,包含左序群的自由积作为有限索引子群的群),我们得到了这个不等式的一个类比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Analogue of the Strengthened Hanna Neumann Conjecture for Virtually Free Groups and Virtually Free Products
The Friedman--Mineyev theorem, earlier known as the (strengthened) Hanna Neumann conjecture, gives a sharp estimate for the rank of the intersection of two subgroups in a free group. We obtain an analogue of this inequality for any two subgroups in a virtually free group (or, more generally, in a group containing a free product of left-orderable groups as a finite-index subgroup).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
50
审稿时长
>12 weeks
期刊介绍: The Michigan Mathematical Journal is available electronically through the Project Euclid web site. The electronic version is available free to all paid subscribers. The Journal must receive from institutional subscribers a list of Internet Protocol Addresses in order for members of their institutions to have access to the online version of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信