{"title":"用线性弹性方程求解板振动问题的节点不连续伽辽金法","authors":"I. Sihar, M. Hornikx","doi":"10.3813/AAA.919347","DOIUrl":null,"url":null,"abstract":"This work presents a numerical solution of the forced plate vibration problem using the nodal discontinuous Galerkin (DG) method. The plate is modelled as a three-dimensional domain, and its vibration is governed by the linear elasticity equations. The nodal DG method discretises the\n spatial domain and computes the spatial derivatives of the equations element-wise, while the time integration is conducted using the Runge-Kutta method. This method is in particular of interest as it is very favourable to carry out the computation by a parallel implementation. Several aspects\n regarding the numerical implementation such as the plate boundary conditions, the point force excitation, and the upwind numerical flux are presented. The numerical results are validated for rectangular concrete plates with different sets of boundary conditions and thicknesses, by a comparison\n with the exact mobilities that are derived from the classical plate theory (CPT) and the first order shear deformation theory (FSDT). The plate thickness is varied to understand its effect regarding the comparison with the CPT. An excellent agreement between the numerical solution and the\n FSDT was found. The agreement with the CPT occurs only at the first couple of resonance frequencies, and as the plate is getting thinner. Furthermore, the numerical example is extended to an L-shaped concrete plate. The mobility is then compared with the mobilities obtained by the CPT, FSDT,\n and linear elasticity equations.","PeriodicalId":35085,"journal":{"name":"Acta Acustica united with Acustica","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Implementation of the Nodal Discontinuous Galerkin Method for the Plate Vibration Problem using Linear Elasticity Equations\",\"authors\":\"I. Sihar, M. Hornikx\",\"doi\":\"10.3813/AAA.919347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a numerical solution of the forced plate vibration problem using the nodal discontinuous Galerkin (DG) method. The plate is modelled as a three-dimensional domain, and its vibration is governed by the linear elasticity equations. The nodal DG method discretises the\\n spatial domain and computes the spatial derivatives of the equations element-wise, while the time integration is conducted using the Runge-Kutta method. This method is in particular of interest as it is very favourable to carry out the computation by a parallel implementation. Several aspects\\n regarding the numerical implementation such as the plate boundary conditions, the point force excitation, and the upwind numerical flux are presented. The numerical results are validated for rectangular concrete plates with different sets of boundary conditions and thicknesses, by a comparison\\n with the exact mobilities that are derived from the classical plate theory (CPT) and the first order shear deformation theory (FSDT). The plate thickness is varied to understand its effect regarding the comparison with the CPT. An excellent agreement between the numerical solution and the\\n FSDT was found. The agreement with the CPT occurs only at the first couple of resonance frequencies, and as the plate is getting thinner. Furthermore, the numerical example is extended to an L-shaped concrete plate. The mobility is then compared with the mobilities obtained by the CPT, FSDT,\\n and linear elasticity equations.\",\"PeriodicalId\":35085,\"journal\":{\"name\":\"Acta Acustica united with Acustica\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Acustica united with Acustica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3813/AAA.919347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Acustica united with Acustica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3813/AAA.919347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
Implementation of the Nodal Discontinuous Galerkin Method for the Plate Vibration Problem using Linear Elasticity Equations
This work presents a numerical solution of the forced plate vibration problem using the nodal discontinuous Galerkin (DG) method. The plate is modelled as a three-dimensional domain, and its vibration is governed by the linear elasticity equations. The nodal DG method discretises the
spatial domain and computes the spatial derivatives of the equations element-wise, while the time integration is conducted using the Runge-Kutta method. This method is in particular of interest as it is very favourable to carry out the computation by a parallel implementation. Several aspects
regarding the numerical implementation such as the plate boundary conditions, the point force excitation, and the upwind numerical flux are presented. The numerical results are validated for rectangular concrete plates with different sets of boundary conditions and thicknesses, by a comparison
with the exact mobilities that are derived from the classical plate theory (CPT) and the first order shear deformation theory (FSDT). The plate thickness is varied to understand its effect regarding the comparison with the CPT. An excellent agreement between the numerical solution and the
FSDT was found. The agreement with the CPT occurs only at the first couple of resonance frequencies, and as the plate is getting thinner. Furthermore, the numerical example is extended to an L-shaped concrete plate. The mobility is then compared with the mobilities obtained by the CPT, FSDT,
and linear elasticity equations.
期刊介绍:
Cessation. Acta Acustica united with Acustica (Acta Acust united Ac), was published together with the European Acoustics Association (EAA). It was an international, peer-reviewed journal on acoustics. It published original articles on all subjects in the field of acoustics, such as
• General Linear Acoustics, • Nonlinear Acoustics, Macrosonics, • Aeroacoustics, • Atmospheric Sound, • Underwater Sound, • Ultrasonics, • Physical Acoustics, • Structural Acoustics, • Noise Control, • Active Control, • Environmental Noise, • Building Acoustics, • Room Acoustics, • Acoustic Materials and Metamaterials, • Audio Signal Processing and Transducers, • Computational and Numerical Acoustics, • Hearing, Audiology and Psychoacoustics, • Speech,
• Musical Acoustics, • Virtual Acoustics, • Auditory Quality of Systems, • Animal Bioacoustics, • History of Acoustics.