{"title":"基于葵花正弦余弦叠加自编码器的信任感知路由在WSN中进行脑电信号分类","authors":"Shanthi Kumaraguru, M. Jebarani","doi":"10.3233/JHS-210654","DOIUrl":null,"url":null,"abstract":"Trust-aware routing is the significant direction for designing the secure routing protocol in Wireless Sensor Network (WSN). However, the trust-aware routing mechanism is implemented to evaluate the trustworthiness of the neighboring nodes based on the set of trust factors. Various trust-aware routing protocols are developed to route the data with minimum delay, but detecting the route with good quality poses a challenging issue in the research community. Therefore, an effective method named Sunflower Sine Cosine (SFSC)-based stacked autoencoder is designed to perform Electroencephalogram (EEG) signal classification using trust-aware routing in WSN. Moreover, the proposed SFSC algorithm incorporates Sunflower Optimization (SFO) and Sine Cosine Algorithm (SCA) that reveals an optimal solution, which is the optimal route used to transmit the EEG signal. Initially, the trust factors are computed from the nodes simulated in the network environment, and thereby, the trust-based routing is performed to achieve EEG signal classification. The proposed SFSC-based stacked autoencoder attained better performance by selecting the optimal path based on the fitness parameters, like energy, trust, and distance. The performance of the proposed approach is analyzed using the metrics, such as sensitivity, accuracy, and specificity. The proposed approach acquires 94.708%, 94.431%, and 95.780% sensitivity, accuracy, and specificity, respectively, with 150 nodes.","PeriodicalId":54809,"journal":{"name":"Journal of High Speed Networks","volume":"5 1","pages":"101-119"},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trust aware routing using sunflower sine cosine-based stacked autoencoder approach for EEG signal classification in WSN\",\"authors\":\"Shanthi Kumaraguru, M. Jebarani\",\"doi\":\"10.3233/JHS-210654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trust-aware routing is the significant direction for designing the secure routing protocol in Wireless Sensor Network (WSN). However, the trust-aware routing mechanism is implemented to evaluate the trustworthiness of the neighboring nodes based on the set of trust factors. Various trust-aware routing protocols are developed to route the data with minimum delay, but detecting the route with good quality poses a challenging issue in the research community. Therefore, an effective method named Sunflower Sine Cosine (SFSC)-based stacked autoencoder is designed to perform Electroencephalogram (EEG) signal classification using trust-aware routing in WSN. Moreover, the proposed SFSC algorithm incorporates Sunflower Optimization (SFO) and Sine Cosine Algorithm (SCA) that reveals an optimal solution, which is the optimal route used to transmit the EEG signal. Initially, the trust factors are computed from the nodes simulated in the network environment, and thereby, the trust-based routing is performed to achieve EEG signal classification. The proposed SFSC-based stacked autoencoder attained better performance by selecting the optimal path based on the fitness parameters, like energy, trust, and distance. The performance of the proposed approach is analyzed using the metrics, such as sensitivity, accuracy, and specificity. The proposed approach acquires 94.708%, 94.431%, and 95.780% sensitivity, accuracy, and specificity, respectively, with 150 nodes.\",\"PeriodicalId\":54809,\"journal\":{\"name\":\"Journal of High Speed Networks\",\"volume\":\"5 1\",\"pages\":\"101-119\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Speed Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/JHS-210654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Speed Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/JHS-210654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Trust aware routing using sunflower sine cosine-based stacked autoencoder approach for EEG signal classification in WSN
Trust-aware routing is the significant direction for designing the secure routing protocol in Wireless Sensor Network (WSN). However, the trust-aware routing mechanism is implemented to evaluate the trustworthiness of the neighboring nodes based on the set of trust factors. Various trust-aware routing protocols are developed to route the data with minimum delay, but detecting the route with good quality poses a challenging issue in the research community. Therefore, an effective method named Sunflower Sine Cosine (SFSC)-based stacked autoencoder is designed to perform Electroencephalogram (EEG) signal classification using trust-aware routing in WSN. Moreover, the proposed SFSC algorithm incorporates Sunflower Optimization (SFO) and Sine Cosine Algorithm (SCA) that reveals an optimal solution, which is the optimal route used to transmit the EEG signal. Initially, the trust factors are computed from the nodes simulated in the network environment, and thereby, the trust-based routing is performed to achieve EEG signal classification. The proposed SFSC-based stacked autoencoder attained better performance by selecting the optimal path based on the fitness parameters, like energy, trust, and distance. The performance of the proposed approach is analyzed using the metrics, such as sensitivity, accuracy, and specificity. The proposed approach acquires 94.708%, 94.431%, and 95.780% sensitivity, accuracy, and specificity, respectively, with 150 nodes.
期刊介绍:
The Journal of High Speed Networks is an international archival journal, active since 1992, providing a publication vehicle for covering a large number of topics of interest in the high performance networking and communication area. Its audience includes researchers, managers as well as network designers and operators. The main goal will be to provide timely dissemination of information and scientific knowledge.
The journal will publish contributed papers on novel research, survey and position papers on topics of current interest, technical notes, and short communications to report progress on long-term projects. Submissions to the Journal will be refereed consistently with the review process of leading technical journals, based on originality, significance, quality, and clarity.
The journal will publish papers on a number of topics ranging from design to practical experiences with operational high performance/speed networks.