双电机驱动电动汽车的混合储能系统

Zhongyue Zou, Jun Xu, Fan-ming Zeng, X. Mei
{"title":"双电机驱动电动汽车的混合储能系统","authors":"Zhongyue Zou, Jun Xu, Fan-ming Zeng, X. Mei","doi":"10.12783/dteees/iceee2019/31795","DOIUrl":null,"url":null,"abstract":"To satisfy the high power requirements for accelerating, climbing or running at high speeds, dualmotor driven electric vehicle (EV) is becoming more and more popular. To reduce the high-power influence to the battery life, a hybrid energy storage system (HESS) for dual-motor driven EV is proposed in this paper. Compared with conventional HESS, the proposed method is suitable for dual-motor driven EV, by the additional ultra-capacitor (UC). Different modes of the HESS are able to be realized, and the overall efficiency can be optimized. Moreover, no DC/DC converter is needed in this method, and the cost and the control complexity are reduced. The topology of the HESS is firstly proposed and the working principle is analyzed. The simulation is established to validate the proposed method.","PeriodicalId":11324,"journal":{"name":"DEStech Transactions on Environment, Energy and Earth Sciences","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Hybrid Energy Storage System for Dual-Motor Driven Electric Vehicles\",\"authors\":\"Zhongyue Zou, Jun Xu, Fan-ming Zeng, X. Mei\",\"doi\":\"10.12783/dteees/iceee2019/31795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To satisfy the high power requirements for accelerating, climbing or running at high speeds, dualmotor driven electric vehicle (EV) is becoming more and more popular. To reduce the high-power influence to the battery life, a hybrid energy storage system (HESS) for dual-motor driven EV is proposed in this paper. Compared with conventional HESS, the proposed method is suitable for dual-motor driven EV, by the additional ultra-capacitor (UC). Different modes of the HESS are able to be realized, and the overall efficiency can be optimized. Moreover, no DC/DC converter is needed in this method, and the cost and the control complexity are reduced. The topology of the HESS is firstly proposed and the working principle is analyzed. The simulation is established to validate the proposed method.\",\"PeriodicalId\":11324,\"journal\":{\"name\":\"DEStech Transactions on Environment, Energy and Earth Sciences\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DEStech Transactions on Environment, Energy and Earth Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12783/dteees/iceee2019/31795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DEStech Transactions on Environment, Energy and Earth Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/dteees/iceee2019/31795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了满足加速、爬坡或高速行驶的大功率需求,双电机驱动的电动汽车(EV)越来越受欢迎。为降低大功率对电池寿命的影响,提出了一种双电机驱动电动汽车混合储能系统。与传统的HESS相比,该方法通过增加超级电容器(UC),适用于双电机驱动的电动汽车。可以实现不同模式的HESS,并可以优化整体效率。该方法不需要DC/DC变换器,降低了成本和控制复杂度。首先提出了HESS的拓扑结构,分析了其工作原理。通过仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid Energy Storage System for Dual-Motor Driven Electric Vehicles
To satisfy the high power requirements for accelerating, climbing or running at high speeds, dualmotor driven electric vehicle (EV) is becoming more and more popular. To reduce the high-power influence to the battery life, a hybrid energy storage system (HESS) for dual-motor driven EV is proposed in this paper. Compared with conventional HESS, the proposed method is suitable for dual-motor driven EV, by the additional ultra-capacitor (UC). Different modes of the HESS are able to be realized, and the overall efficiency can be optimized. Moreover, no DC/DC converter is needed in this method, and the cost and the control complexity are reduced. The topology of the HESS is firstly proposed and the working principle is analyzed. The simulation is established to validate the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信