耦合系统最优控制问题的拓扑渐近分析

Asymptot. Anal. Pub Date : 2018-08-03 DOI:10.3233/ASY-181465
L. Fernandez, A. Novotny, R. Prakash
{"title":"耦合系统最优控制问题的拓扑渐近分析","authors":"L. Fernandez, A. Novotny, R. Prakash","doi":"10.3233/ASY-181465","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with the topological asymptotic analysis of an optimal control problem modeled by a coupled system. The control is a geometrical object and the cost is given by the misfit between a target function and the state, solution of the Helmholtz-Laplace coupled system. Higher-order topological derivatives are used to devise a non-iterative algorithm to compute the optimal control for the problem of interest. Numerical examples are presented in order to demonstrate the effectiveness of the proposed algorithm.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"26 1","pages":"1-26"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Topological asymptotic analysis of an optimal control problem modeled by a coupled system\",\"authors\":\"L. Fernandez, A. Novotny, R. Prakash\",\"doi\":\"10.3233/ASY-181465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we deal with the topological asymptotic analysis of an optimal control problem modeled by a coupled system. The control is a geometrical object and the cost is given by the misfit between a target function and the state, solution of the Helmholtz-Laplace coupled system. Higher-order topological derivatives are used to devise a non-iterative algorithm to compute the optimal control for the problem of interest. Numerical examples are presented in order to demonstrate the effectiveness of the proposed algorithm.\",\"PeriodicalId\":8603,\"journal\":{\"name\":\"Asymptot. Anal.\",\"volume\":\"26 1\",\"pages\":\"1-26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptot. Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ASY-181465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-181465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了一类由耦合系统建模的最优控制问题的拓扑渐近分析。控制是一个几何对象,其代价是目标函数与状态解的不拟合。利用高阶拓扑导数设计了一种非迭代算法来计算所关注问题的最优控制。通过数值算例验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological asymptotic analysis of an optimal control problem modeled by a coupled system
In this paper, we deal with the topological asymptotic analysis of an optimal control problem modeled by a coupled system. The control is a geometrical object and the cost is given by the misfit between a target function and the state, solution of the Helmholtz-Laplace coupled system. Higher-order topological derivatives are used to devise a non-iterative algorithm to compute the optimal control for the problem of interest. Numerical examples are presented in order to demonstrate the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信