Zac Arackakudiyil Suresh, Ajit Kumar, L. Rondon, Darshan Pingle, Khaled Al-Hindi, M. Boushahri
{"title":"科威特西部Minagish油田智能多口井完井过程中的挑战和经验教训","authors":"Zac Arackakudiyil Suresh, Ajit Kumar, L. Rondon, Darshan Pingle, Khaled Al-Hindi, M. Boushahri","doi":"10.2118/191742-MS","DOIUrl":null,"url":null,"abstract":"Multilateral intelligent wells have been proven effective by both extending reservoir contact and providing proactive reservoir management. This paper highlights the lessons learned and critical well construction and completion steps that improve the efficiency of intelligent multilateral well drilling and completions operations. The case study outlines the successful completion of the third multilateral intelligent well in the Minagish field of West Kuwait. The intelligent level 4 multilateral well was designed and drilled successfully. The sidetrack was performed using a specialized latch coupling that allowed for multilateral window cutting, orienting, and re-entry. The latch coupling was run in hole with the main bore casing, and a key orienting tool was used to confirm its orientation. Once the main bore was complete, a window was cut using a dedicated milling machine. Thereafter, a drilling whipstock was run with a window mill and watermelon mill to allow access to the lateral. This was followed by drilling the lateral section and running and cementing the liner. After the lateral section was drilled to the planned depth and cleaned out, the whipstock was retrieved. The intelligent completion installation consisted of a lubricator valve, two downhole permanent gauges, and two variable choke interval control valves. The presence of surface-controlled, variable choke valves to control inflow from both the main bore and the lateral provides the capability to effectively manage the reservoir and production over the life of the well. This, in turn, prolongs the field life, thus improving overall economic performance and field economics. The case study well is the third multilateral intelligent well installed in Kuwait, and many recommended practices were implemented that allowed for improved efficiency and safety of the operation. Maintaining a clean well was emphasized as a top priority throughout the well construction process. The cement curing time was increased and the completion string was reviewed and redesigned. This paper discusses the lessons learned and improvements made during installation of the third multilateral intelligent well. The steps performed during this operation have become the recommended practices for all upcoming intelligent multilateral well operations in Kuwait.","PeriodicalId":11015,"journal":{"name":"Day 1 Mon, September 24, 2018","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Challenges and Lessons Learned During Completion of Intelligent Multilateral Wells in Minagish Field, West Kuwait\",\"authors\":\"Zac Arackakudiyil Suresh, Ajit Kumar, L. Rondon, Darshan Pingle, Khaled Al-Hindi, M. Boushahri\",\"doi\":\"10.2118/191742-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multilateral intelligent wells have been proven effective by both extending reservoir contact and providing proactive reservoir management. This paper highlights the lessons learned and critical well construction and completion steps that improve the efficiency of intelligent multilateral well drilling and completions operations. The case study outlines the successful completion of the third multilateral intelligent well in the Minagish field of West Kuwait. The intelligent level 4 multilateral well was designed and drilled successfully. The sidetrack was performed using a specialized latch coupling that allowed for multilateral window cutting, orienting, and re-entry. The latch coupling was run in hole with the main bore casing, and a key orienting tool was used to confirm its orientation. Once the main bore was complete, a window was cut using a dedicated milling machine. Thereafter, a drilling whipstock was run with a window mill and watermelon mill to allow access to the lateral. This was followed by drilling the lateral section and running and cementing the liner. After the lateral section was drilled to the planned depth and cleaned out, the whipstock was retrieved. The intelligent completion installation consisted of a lubricator valve, two downhole permanent gauges, and two variable choke interval control valves. The presence of surface-controlled, variable choke valves to control inflow from both the main bore and the lateral provides the capability to effectively manage the reservoir and production over the life of the well. This, in turn, prolongs the field life, thus improving overall economic performance and field economics. The case study well is the third multilateral intelligent well installed in Kuwait, and many recommended practices were implemented that allowed for improved efficiency and safety of the operation. Maintaining a clean well was emphasized as a top priority throughout the well construction process. The cement curing time was increased and the completion string was reviewed and redesigned. This paper discusses the lessons learned and improvements made during installation of the third multilateral intelligent well. The steps performed during this operation have become the recommended practices for all upcoming intelligent multilateral well operations in Kuwait.\",\"PeriodicalId\":11015,\"journal\":{\"name\":\"Day 1 Mon, September 24, 2018\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, September 24, 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/191742-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, September 24, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/191742-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Challenges and Lessons Learned During Completion of Intelligent Multilateral Wells in Minagish Field, West Kuwait
Multilateral intelligent wells have been proven effective by both extending reservoir contact and providing proactive reservoir management. This paper highlights the lessons learned and critical well construction and completion steps that improve the efficiency of intelligent multilateral well drilling and completions operations. The case study outlines the successful completion of the third multilateral intelligent well in the Minagish field of West Kuwait. The intelligent level 4 multilateral well was designed and drilled successfully. The sidetrack was performed using a specialized latch coupling that allowed for multilateral window cutting, orienting, and re-entry. The latch coupling was run in hole with the main bore casing, and a key orienting tool was used to confirm its orientation. Once the main bore was complete, a window was cut using a dedicated milling machine. Thereafter, a drilling whipstock was run with a window mill and watermelon mill to allow access to the lateral. This was followed by drilling the lateral section and running and cementing the liner. After the lateral section was drilled to the planned depth and cleaned out, the whipstock was retrieved. The intelligent completion installation consisted of a lubricator valve, two downhole permanent gauges, and two variable choke interval control valves. The presence of surface-controlled, variable choke valves to control inflow from both the main bore and the lateral provides the capability to effectively manage the reservoir and production over the life of the well. This, in turn, prolongs the field life, thus improving overall economic performance and field economics. The case study well is the third multilateral intelligent well installed in Kuwait, and many recommended practices were implemented that allowed for improved efficiency and safety of the operation. Maintaining a clean well was emphasized as a top priority throughout the well construction process. The cement curing time was increased and the completion string was reviewed and redesigned. This paper discusses the lessons learned and improvements made during installation of the third multilateral intelligent well. The steps performed during this operation have become the recommended practices for all upcoming intelligent multilateral well operations in Kuwait.