{"title":"关于独轮车图和自行车图的调色板指数","authors":"A. Ghazaryan","doi":"10.46991/pysu:a/2019.53.1.003","DOIUrl":null,"url":null,"abstract":"Given a proper edge coloring $ \\phi $ of a graph $ G $, we define the palette $ S_G (\\nu, \\phi) $ of a vertex $ \\nu \\mathclose{\\in} V(G) $ as the set of all colors appearing on edges incident with $ \\nu $. The palette index $ \\check{s} (G) $ of $ G $ is the minimum number of distinct palettes occurring in a proper edge coloring of $ G $. In this paper we give an upper bound on the palette index of a graph G in terms of cyclomatic number $ cyc(G) $ of $ G $ and maximum degree $ \\Delta (G) $ of $ G $. We also give a sharp upper bound for the palette index of unicycle and bicycle graphs.","PeriodicalId":21146,"journal":{"name":"Proceedings of the YSU A: Physical and Mathematical Sciences","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ON PALETTE INDEX OF UNICYCLE AND BICYCLE GRAPHS\",\"authors\":\"A. Ghazaryan\",\"doi\":\"10.46991/pysu:a/2019.53.1.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a proper edge coloring $ \\\\phi $ of a graph $ G $, we define the palette $ S_G (\\\\nu, \\\\phi) $ of a vertex $ \\\\nu \\\\mathclose{\\\\in} V(G) $ as the set of all colors appearing on edges incident with $ \\\\nu $. The palette index $ \\\\check{s} (G) $ of $ G $ is the minimum number of distinct palettes occurring in a proper edge coloring of $ G $. In this paper we give an upper bound on the palette index of a graph G in terms of cyclomatic number $ cyc(G) $ of $ G $ and maximum degree $ \\\\Delta (G) $ of $ G $. We also give a sharp upper bound for the palette index of unicycle and bicycle graphs.\",\"PeriodicalId\":21146,\"journal\":{\"name\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46991/pysu:a/2019.53.1.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the YSU A: Physical and Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46991/pysu:a/2019.53.1.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
给定图形$ G $的适当边着色$ \phi $,我们将顶点$ \nu \mathclose{\in} V(G) $的调色板$ S_G (\nu, \phi) $定义为与$ \nu $相关的边上出现的所有颜色的集合。$ G $的调色板指数$ \check{s} (G) $是在$ G $的适当边缘着色中出现的不同调色板的最小数量。本文用$ G $的圈数$ cyc(G) $和$ G $的最大次$ \Delta (G) $给出了图G的调色指数的上界。我们还给出了单轮图和自行车图的调色板指数的一个明显的上界。
Given a proper edge coloring $ \phi $ of a graph $ G $, we define the palette $ S_G (\nu, \phi) $ of a vertex $ \nu \mathclose{\in} V(G) $ as the set of all colors appearing on edges incident with $ \nu $. The palette index $ \check{s} (G) $ of $ G $ is the minimum number of distinct palettes occurring in a proper edge coloring of $ G $. In this paper we give an upper bound on the palette index of a graph G in terms of cyclomatic number $ cyc(G) $ of $ G $ and maximum degree $ \Delta (G) $ of $ G $. We also give a sharp upper bound for the palette index of unicycle and bicycle graphs.