增强远程操作使用自动完成

Mohammad Kassem Zein, Abbas Sidaoui, Daniel C. Asmar, I. Elhajj
{"title":"增强远程操作使用自动完成","authors":"Mohammad Kassem Zein, Abbas Sidaoui, Daniel C. Asmar, I. Elhajj","doi":"10.1109/ICRA40945.2020.9197140","DOIUrl":null,"url":null,"abstract":"Controlling and manning robots from a remote location is difficult because of the limitations one faces in perception and available degrees of actuation. Although humans can become skilled teleoperators, the amount of training time required to acquire such skills is typically very high. In this paper, we propose a novel solution (named Autocomplete) to aid novice teleoperators in manning robots adroitly. At the input side, Autocomplete relies on machine learning to detect and categorize human inputs as one from a group of motion primitives. Once a desired motion is recognized, at the actuation side an automated command replaces the human input in performing the desired action. So far, Autocomplete can recognize and synthesize lines, arcs, full circles, 3-D helices, and sine trajectories. Autocomplete was tested in simulation on the teleoperation of an unmanned aerial vehicle, and results demonstrate the advantages of the proposed solution versus manual steering.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"126 1","pages":"9178-9184"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Enhanced Teleoperation Using Autocomplete\",\"authors\":\"Mohammad Kassem Zein, Abbas Sidaoui, Daniel C. Asmar, I. Elhajj\",\"doi\":\"10.1109/ICRA40945.2020.9197140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controlling and manning robots from a remote location is difficult because of the limitations one faces in perception and available degrees of actuation. Although humans can become skilled teleoperators, the amount of training time required to acquire such skills is typically very high. In this paper, we propose a novel solution (named Autocomplete) to aid novice teleoperators in manning robots adroitly. At the input side, Autocomplete relies on machine learning to detect and categorize human inputs as one from a group of motion primitives. Once a desired motion is recognized, at the actuation side an automated command replaces the human input in performing the desired action. So far, Autocomplete can recognize and synthesize lines, arcs, full circles, 3-D helices, and sine trajectories. Autocomplete was tested in simulation on the teleoperation of an unmanned aerial vehicle, and results demonstrate the advantages of the proposed solution versus manual steering.\",\"PeriodicalId\":6859,\"journal\":{\"name\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"126 1\",\"pages\":\"9178-9184\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA40945.2020.9197140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9197140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于感知和可用的驱动程度的限制,从远程位置控制和操纵机器人是困难的。虽然人类可以成为熟练的远程操作员,但获得此类技能所需的培训时间通常非常高。在本文中,我们提出了一种新的解决方案(称为自动完成),以帮助新手熟练地操纵机器人。在输入端,自动完成依赖于机器学习来检测和分类人类输入作为一组运动原语。一旦识别出所需的动作,在驱动端,自动命令取代人工输入来执行所需的动作。到目前为止,Autocomplete可以识别和合成直线、圆弧、全圆、三维螺旋和正弦轨迹。在无人机远程操作仿真中对自动补全进行了测试,结果表明了该方案相对于手动转向的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Teleoperation Using Autocomplete
Controlling and manning robots from a remote location is difficult because of the limitations one faces in perception and available degrees of actuation. Although humans can become skilled teleoperators, the amount of training time required to acquire such skills is typically very high. In this paper, we propose a novel solution (named Autocomplete) to aid novice teleoperators in manning robots adroitly. At the input side, Autocomplete relies on machine learning to detect and categorize human inputs as one from a group of motion primitives. Once a desired motion is recognized, at the actuation side an automated command replaces the human input in performing the desired action. So far, Autocomplete can recognize and synthesize lines, arcs, full circles, 3-D helices, and sine trajectories. Autocomplete was tested in simulation on the teleoperation of an unmanned aerial vehicle, and results demonstrate the advantages of the proposed solution versus manual steering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信