Alexander积分算子的广义算子

Pub Date : 2020-11-01 DOI:10.2478/ausm-2020-0021
H. Güney, S. Owa
{"title":"Alexander积分算子的广义算子","authors":"H. Güney, S. Owa","doi":"10.2478/ausm-2020-0021","DOIUrl":null,"url":null,"abstract":"Abstract Let Tn be the class of functions f which are defined by a power series f(z)=z+an+1zn+1+an2zn+2+…f\\left( z \\right) = z + {a_{n + 1}}{z^{n + 1}} + {a_n}2{z^{n + 2}} + \\ldots for every z in the closed unit disc 𝕌¯\\bar {\\mathbb{U}}. With m different boundary points zs, (s = 1,2,...,m), we consider αm ∈ eiβ𝒜−j−λf(𝕌), here 𝒜−j−λ is the generalized Alexander integral operator and 𝕌 is the open unit disc. Applying 𝒜−j−λ, a subclass Bn(αm,β,ρ; j, λ) of Tn is defined with fractional integral for functions f. The object of present paper is to consider some interesting properties of f to be in Bn(αm,β,ρ; j, λ).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized operator for Alexander integral operator\",\"authors\":\"H. Güney, S. Owa\",\"doi\":\"10.2478/ausm-2020-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let Tn be the class of functions f which are defined by a power series f(z)=z+an+1zn+1+an2zn+2+…f\\\\left( z \\\\right) = z + {a_{n + 1}}{z^{n + 1}} + {a_n}2{z^{n + 2}} + \\\\ldots for every z in the closed unit disc 𝕌¯\\\\bar {\\\\mathbb{U}}. With m different boundary points zs, (s = 1,2,...,m), we consider αm ∈ eiβ𝒜−j−λf(𝕌), here 𝒜−j−λ is the generalized Alexander integral operator and 𝕌 is the open unit disc. Applying 𝒜−j−λ, a subclass Bn(αm,β,ρ; j, λ) of Tn is defined with fractional integral for functions f. The object of present paper is to consider some interesting properties of f to be in Bn(αm,β,ρ; j, λ).\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2020-0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2020-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:设Tn为一类函数f,该类函数f由幂级数f(z)=z+an+1zn+1+an2zn+2+…f \left (z \right)=z+ {a_n{ +}}{1z ^{n +1}}+{ a_n2z}^{n +2+{}}\ldots对封闭单位圆盘 \bar{\mathbb{U}}中的每一个z定义。有m个不同的边界点zs, (s = 1,2,…,m),我们考虑αm∈eiβ - j−λf(),这里- j−λ是广义Alexander积分算子,是开单位圆盘。应用φ - j−λ,得到一个子类Bn(αm,β,ρ;n的j, λ)用函数f的分数积分来定义。本文的目的是考虑f在Bn(αm,β,ρ;J, λ)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Generalized operator for Alexander integral operator
Abstract Let Tn be the class of functions f which are defined by a power series f(z)=z+an+1zn+1+an2zn+2+…f\left( z \right) = z + {a_{n + 1}}{z^{n + 1}} + {a_n}2{z^{n + 2}} + \ldots for every z in the closed unit disc 𝕌¯\bar {\mathbb{U}}. With m different boundary points zs, (s = 1,2,...,m), we consider αm ∈ eiβ𝒜−j−λf(𝕌), here 𝒜−j−λ is the generalized Alexander integral operator and 𝕌 is the open unit disc. Applying 𝒜−j−λ, a subclass Bn(αm,β,ρ; j, λ) of Tn is defined with fractional integral for functions f. The object of present paper is to consider some interesting properties of f to be in Bn(αm,β,ρ; j, λ).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信