重新审视大数据系统中的性能:一种资源解耦方法

Chen Yang, Qi Guo, Xiaofeng Meng, Rihui Xin, Chunkai Wang
{"title":"重新审视大数据系统中的性能:一种资源解耦方法","authors":"Chen Yang, Qi Guo, Xiaofeng Meng, Rihui Xin, Chunkai Wang","doi":"10.1145/3127479.3132685","DOIUrl":null,"url":null,"abstract":"Big data systems for large-scale data processing are now in widespread use. To improve their performance, both academia and industry have expended a great deal of effort in the analysis of performance bottlenecks. Most big data systems, as Hadoop and Spark, allow distributed computing across clusters. As a result, the execution of systems always parallelizes the use of the CPU, memory, disk and network. If a given resource has the greatest limiting impact on performance, systems will be bottlenecked on it. For a system designer, it is effective for the improvement of performance to tune the bottleneck resource. The key point for the aforementioned scenario is how to determine the bottleneck resource. The nature clue is to quantify the impact of the four major components and identify one causing the greatest impact factor as the bottleneck resource.","PeriodicalId":20679,"journal":{"name":"Proceedings of the 2017 Symposium on Cloud Computing","volume":"2012 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting performance in big data systems: an resource decoupling approach\",\"authors\":\"Chen Yang, Qi Guo, Xiaofeng Meng, Rihui Xin, Chunkai Wang\",\"doi\":\"10.1145/3127479.3132685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big data systems for large-scale data processing are now in widespread use. To improve their performance, both academia and industry have expended a great deal of effort in the analysis of performance bottlenecks. Most big data systems, as Hadoop and Spark, allow distributed computing across clusters. As a result, the execution of systems always parallelizes the use of the CPU, memory, disk and network. If a given resource has the greatest limiting impact on performance, systems will be bottlenecked on it. For a system designer, it is effective for the improvement of performance to tune the bottleneck resource. The key point for the aforementioned scenario is how to determine the bottleneck resource. The nature clue is to quantify the impact of the four major components and identify one causing the greatest impact factor as the bottleneck resource.\",\"PeriodicalId\":20679,\"journal\":{\"name\":\"Proceedings of the 2017 Symposium on Cloud Computing\",\"volume\":\"2012 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 Symposium on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3127479.3132685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3127479.3132685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用于大规模数据处理的大数据系统正在得到广泛应用。为了提高它们的性能,学术界和工业界都花费了大量的精力来分析性能瓶颈。大多数大数据系统,如Hadoop和Spark,都允许跨集群的分布式计算。因此,系统的执行总是并行地使用CPU、内存、磁盘和网络。如果给定的资源对性能有最大的限制影响,系统就会在它上面遇到瓶颈。对于系统设计人员来说,优化瓶颈资源是提高性能的有效方法。上述场景的关键点是如何确定瓶颈资源。自然线索是量化四个主要组成部分的影响,并确定造成最大影响因素的瓶颈资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revisiting performance in big data systems: an resource decoupling approach
Big data systems for large-scale data processing are now in widespread use. To improve their performance, both academia and industry have expended a great deal of effort in the analysis of performance bottlenecks. Most big data systems, as Hadoop and Spark, allow distributed computing across clusters. As a result, the execution of systems always parallelizes the use of the CPU, memory, disk and network. If a given resource has the greatest limiting impact on performance, systems will be bottlenecked on it. For a system designer, it is effective for the improvement of performance to tune the bottleneck resource. The key point for the aforementioned scenario is how to determine the bottleneck resource. The nature clue is to quantify the impact of the four major components and identify one causing the greatest impact factor as the bottleneck resource.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信