Carlos Bermúdez, P. Graglia, Natalia Stark, C. Salto, Hugo Alfonso
{"title":"泛群和蜂窝气体组合算子解决车辆路径问题的比较","authors":"Carlos Bermúdez, P. Graglia, Natalia Stark, C. Salto, Hugo Alfonso","doi":"10.4114/IA.V14I46.1520","DOIUrl":null,"url":null,"abstract":"The Vehicle Routing Problem (VRP) deals with the assignment of a set of transportation orders to a fleet of vehicles and the sequencing of stops for each vehicle to minimize transportation costs. This paper presents two different genetic algorithm models (panmitic and cellular models) for providing solutions for the Capacitated VRP (CVRP), which is mainly characterized by using vehicles of the same capacity. We propose a new problem dependent recombination operator, called Best Route Better Adjustment recombination (BRBAX), which incorporates problem specific knowledge such as information about the routes constitution. A comparison of its performance is carried out with respect to classical recombination operators for permutations. A complete study of the influence of the recombination operators on the genetic search is presented. The results show that the use of our specialized BRBAX operator outperforms the others more generic operators for all problem instances under all metrics. The deviation between our best solution and the best-known one is very low, under 0.91%.","PeriodicalId":43470,"journal":{"name":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2010-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Comparison of Recombination Operators in Panmictic and Cellular GAs to Solve a Vehicle Routing Problem\",\"authors\":\"Carlos Bermúdez, P. Graglia, Natalia Stark, C. Salto, Hugo Alfonso\",\"doi\":\"10.4114/IA.V14I46.1520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Vehicle Routing Problem (VRP) deals with the assignment of a set of transportation orders to a fleet of vehicles and the sequencing of stops for each vehicle to minimize transportation costs. This paper presents two different genetic algorithm models (panmitic and cellular models) for providing solutions for the Capacitated VRP (CVRP), which is mainly characterized by using vehicles of the same capacity. We propose a new problem dependent recombination operator, called Best Route Better Adjustment recombination (BRBAX), which incorporates problem specific knowledge such as information about the routes constitution. A comparison of its performance is carried out with respect to classical recombination operators for permutations. A complete study of the influence of the recombination operators on the genetic search is presented. The results show that the use of our specialized BRBAX operator outperforms the others more generic operators for all problem instances under all metrics. The deviation between our best solution and the best-known one is very low, under 0.91%.\",\"PeriodicalId\":43470,\"journal\":{\"name\":\"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2010-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4114/IA.V14I46.1520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4114/IA.V14I46.1520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Comparison of Recombination Operators in Panmictic and Cellular GAs to Solve a Vehicle Routing Problem
The Vehicle Routing Problem (VRP) deals with the assignment of a set of transportation orders to a fleet of vehicles and the sequencing of stops for each vehicle to minimize transportation costs. This paper presents two different genetic algorithm models (panmitic and cellular models) for providing solutions for the Capacitated VRP (CVRP), which is mainly characterized by using vehicles of the same capacity. We propose a new problem dependent recombination operator, called Best Route Better Adjustment recombination (BRBAX), which incorporates problem specific knowledge such as information about the routes constitution. A comparison of its performance is carried out with respect to classical recombination operators for permutations. A complete study of the influence of the recombination operators on the genetic search is presented. The results show that the use of our specialized BRBAX operator outperforms the others more generic operators for all problem instances under all metrics. The deviation between our best solution and the best-known one is very low, under 0.91%.
期刊介绍:
Inteligencia Artificial is a quarterly journal promoted and sponsored by the Spanish Association for Artificial Intelligence. The journal publishes high-quality original research papers reporting theoretical or applied advances in all branches of Artificial Intelligence. The journal publishes high-quality original research papers reporting theoretical or applied advances in all branches of Artificial Intelligence. Particularly, the Journal welcomes: New approaches, techniques or methods to solve AI problems, which should include demonstrations of effectiveness oor improvement over existing methods. These demonstrations must be reproducible. Integration of different technologies or approaches to solve wide problems or belonging different areas. AI applications, which should describe in detail the problem or the scenario and the proposed solution, emphasizing its novelty and present a evaluation of the AI techniques that are applied. In addition to rapid publication and dissemination of unsolicited contributions, the journal is also committed to producing monographs, surveys or special issues on topics, methods or techniques of special relevance to the AI community. Inteligencia Artificial welcomes submissions written in English, Spaninsh or Portuguese. But at least, a title, summary and keywords in english should be included in each contribution.