新的环形非中心势的薛定谔方程的精确解

Zhang Min-Cang
{"title":"新的环形非中心势的薛定谔方程的精确解","authors":"Zhang Min-Cang","doi":"10.7498/aps.59.6819","DOIUrl":null,"url":null,"abstract":"A new ring-shaped noncentral potential is proposed.The exactly complete solutions of the Schrdinger equation with this model potential are presented by the Nikiforov-Uvarov(N-U)method.It is shown that the component of bound state wavefunction could be expressed by the generalized ultraspherical polynomial or the hypergeometric function,and the radial component is given in terms of the associated Laguerre polynomial.Finally,the effect of the angle-dependent part on the radial solutions and several particular cases of this potential are also dicussed.","PeriodicalId":17047,"journal":{"name":"Journal of Shaanxi Normal University","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact solutions of the Schrdinger equation for a new ring-shaped noncentral potential\",\"authors\":\"Zhang Min-Cang\",\"doi\":\"10.7498/aps.59.6819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new ring-shaped noncentral potential is proposed.The exactly complete solutions of the Schrdinger equation with this model potential are presented by the Nikiforov-Uvarov(N-U)method.It is shown that the component of bound state wavefunction could be expressed by the generalized ultraspherical polynomial or the hypergeometric function,and the radial component is given in terms of the associated Laguerre polynomial.Finally,the effect of the angle-dependent part on the radial solutions and several particular cases of this potential are also dicussed.\",\"PeriodicalId\":17047,\"journal\":{\"name\":\"Journal of Shaanxi Normal University\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Shaanxi Normal University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7498/aps.59.6819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Shaanxi Normal University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7498/aps.59.6819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的环形非中心势。用Nikiforov-Uvarov(N-U)方法给出了具有该模型势的Schr定谔方程的精确完全解。结果表明,束缚态波函数的分量可以用广义超球面多项式或超几何函数表示,径向分量可以用相应的拉盖尔多项式表示。最后,还讨论了角相关部分对径向解的影响以及该势的几个特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact solutions of the Schrdinger equation for a new ring-shaped noncentral potential
A new ring-shaped noncentral potential is proposed.The exactly complete solutions of the Schrdinger equation with this model potential are presented by the Nikiforov-Uvarov(N-U)method.It is shown that the component of bound state wavefunction could be expressed by the generalized ultraspherical polynomial or the hypergeometric function,and the radial component is given in terms of the associated Laguerre polynomial.Finally,the effect of the angle-dependent part on the radial solutions and several particular cases of this potential are also dicussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信