用流函数公式求解Oseen方程的非协调虚元法

IF 1.9 3区 数学 Q2 Mathematics
D. Adak, G. Manzini
{"title":"用流函数公式求解Oseen方程的非协调虚元法","authors":"D. Adak, G. Manzini","doi":"10.1051/m2an/2023075","DOIUrl":null,"url":null,"abstract":"We approximate the solution of the stream function formulation of the Oseen equations on general domains by designing a nonconforming Morley-type virtual element method. Under a suitable assumption on the continuous problem’s coefficients, the discrete scheme is well-posed. By introducing an enriching operator , we derive an a priori estimate of the error in a discrete H 2 norm. By post-processing the discrete stream function, we compute the discrete velocity and vorticity fields. Furthermore, we recover an approximate pressure field by solving a Stokes-like problem in a nonconforming Crouzeix-Raviart -type virtual element space that is in a Stokes-complex relation with the Morley-type space of the virtual element approximation. Finally, we confirm our theoretical estimates by solving benchmark problems that include a convex and a nonconvex domain.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":"50 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The nonconforming virtual element method for Oseen’s equation using a stream-function formulation\",\"authors\":\"D. Adak, G. Manzini\",\"doi\":\"10.1051/m2an/2023075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We approximate the solution of the stream function formulation of the Oseen equations on general domains by designing a nonconforming Morley-type virtual element method. Under a suitable assumption on the continuous problem’s coefficients, the discrete scheme is well-posed. By introducing an enriching operator , we derive an a priori estimate of the error in a discrete H 2 norm. By post-processing the discrete stream function, we compute the discrete velocity and vorticity fields. Furthermore, we recover an approximate pressure field by solving a Stokes-like problem in a nonconforming Crouzeix-Raviart -type virtual element space that is in a Stokes-complex relation with the Morley-type space of the virtual element approximation. Finally, we confirm our theoretical estimates by solving benchmark problems that include a convex and a nonconvex domain.\",\"PeriodicalId\":50499,\"journal\":{\"name\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/m2an/2023075\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/m2an/2023075","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

通过设计一种非协调morley型虚元法,在一般域上近似求解了Oseen方程的流函数表达式。在对连续问题系数的适当假设下,离散格式是适定的。通过引入充实算子,我们得到了离散h2范数误差的先验估计。通过对离散流函数的后处理,计算出离散的速度场和涡度场。进一步,我们通过求解与虚元逼近的莫利型空间呈stokes复关系的非协调Crouzeix-Raviart型虚元空间中的一个类stokes问题,恢复了近似压力场。最后,我们通过解决包括凸域和非凸域的基准问题来确认我们的理论估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The nonconforming virtual element method for Oseen’s equation using a stream-function formulation
We approximate the solution of the stream function formulation of the Oseen equations on general domains by designing a nonconforming Morley-type virtual element method. Under a suitable assumption on the continuous problem’s coefficients, the discrete scheme is well-posed. By introducing an enriching operator , we derive an a priori estimate of the error in a discrete H 2 norm. By post-processing the discrete stream function, we compute the discrete velocity and vorticity fields. Furthermore, we recover an approximate pressure field by solving a Stokes-like problem in a nonconforming Crouzeix-Raviart -type virtual element space that is in a Stokes-complex relation with the Morley-type space of the virtual element approximation. Finally, we confirm our theoretical estimates by solving benchmark problems that include a convex and a nonconvex domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.30%
发文量
27
审稿时长
6-12 weeks
期刊介绍: M2AN publishes original research papers of high scientific quality in two areas: Mathematical Modelling, and Numerical Analysis. Mathematical Modelling comprises the development and study of a mathematical formulation of a problem. Numerical Analysis comprises the formulation and study of a numerical approximation or solution approach to a mathematically formulated problem. Papers should be of interest to researchers and practitioners that value both rigorous theoretical analysis and solid evidence of computational relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信