再论随机对称矩阵的奇异性

Marcelo Campos, Matthew Jenssen, Marcus Michelen, J. Sahasrabudhe
{"title":"再论随机对称矩阵的奇异性","authors":"Marcelo Campos, Matthew Jenssen, Marcus Michelen, J. Sahasrabudhe","doi":"10.1090/proc/15807","DOIUrl":null,"url":null,"abstract":"Let $M_n$ be drawn uniformly from all $\\pm 1$ symmetric $n \\times n$ matrices. We show that the probability that $M_n$ is singular is at most $\\exp(-c(n\\log n)^{1/2})$, which represents a natural barrier in recent approaches to this problem. In addition to improving on the best-known previous bound of Campos, Mattos, Morris and Morrison of $\\exp(-c n^{1/2})$ on the singularity probability, our method is different and considerably simpler.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Singularity of random symmetric matrices revisited\",\"authors\":\"Marcelo Campos, Matthew Jenssen, Marcus Michelen, J. Sahasrabudhe\",\"doi\":\"10.1090/proc/15807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $M_n$ be drawn uniformly from all $\\\\pm 1$ symmetric $n \\\\times n$ matrices. We show that the probability that $M_n$ is singular is at most $\\\\exp(-c(n\\\\log n)^{1/2})$, which represents a natural barrier in recent approaches to this problem. In addition to improving on the best-known previous bound of Campos, Mattos, Morris and Morrison of $\\\\exp(-c n^{1/2})$ on the singularity probability, our method is different and considerably simpler.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/15807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

设$M_n$从所有的$\pm 1$对称的$n \times n$矩阵中均匀地画出来。我们证明$M_n$是奇异的概率最多是$\exp(-c(n\log n)^{1/2})$,这代表了在最近解决这个问题的方法中的一个自然障碍。除了改进了最著名的Campos, Mattos, Morris和Morrison ($\exp(-c n^{1/2})$)关于奇点概率的上界之外,我们的方法是不同的,而且简单得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Singularity of random symmetric matrices revisited
Let $M_n$ be drawn uniformly from all $\pm 1$ symmetric $n \times n$ matrices. We show that the probability that $M_n$ is singular is at most $\exp(-c(n\log n)^{1/2})$, which represents a natural barrier in recent approaches to this problem. In addition to improving on the best-known previous bound of Campos, Mattos, Morris and Morrison of $\exp(-c n^{1/2})$ on the singularity probability, our method is different and considerably simpler.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信