基于CT强度聚类的弱监督自引导病灶分割

Xueyu Zhu, A. J. Ma
{"title":"基于CT强度聚类的弱监督自引导病灶分割","authors":"Xueyu Zhu, A. J. Ma","doi":"10.1109/ISBI52829.2022.9761552","DOIUrl":null,"url":null,"abstract":"To aid clinicians diagnose diseases and monitor lesion conditions more efficiently, automated lesion segmentation is a convincing approach. As it is time-consuming and costly to obtain pixel-level annotations, weakly-supervised learning has become a promising trend. Recent works based on Class Activation Mapping (CAM) achieve success for natural images, but they have not fully utilized the intensity property in medical images such that the performance may not be good enough. In this work, we propose a novel weakly-supervised lesion segmentation framework with self-guidance by CT intensity clustering. The proposed method takes full advantages of the properties that CT intensity represents the density of materials and partitions pixels into different groups by intensity clustering. Clusters with high lesion probability determined by the CAM are selected to generate lesion masks. Such lesion masks are used to derive self-guided loss functions which improve the CAM for better lesion segmentation. Our method achieves the Dice score of 0.5874 on the COVID-19 dataset and 0.4534 on the Liver Tumor Segmentation Challenge (LiTS) dataset.","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"27 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weakly-Supervised Lesion Segmentation with Self-Guidance by CT Intensity Clustering\",\"authors\":\"Xueyu Zhu, A. J. Ma\",\"doi\":\"10.1109/ISBI52829.2022.9761552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To aid clinicians diagnose diseases and monitor lesion conditions more efficiently, automated lesion segmentation is a convincing approach. As it is time-consuming and costly to obtain pixel-level annotations, weakly-supervised learning has become a promising trend. Recent works based on Class Activation Mapping (CAM) achieve success for natural images, but they have not fully utilized the intensity property in medical images such that the performance may not be good enough. In this work, we propose a novel weakly-supervised lesion segmentation framework with self-guidance by CT intensity clustering. The proposed method takes full advantages of the properties that CT intensity represents the density of materials and partitions pixels into different groups by intensity clustering. Clusters with high lesion probability determined by the CAM are selected to generate lesion masks. Such lesion masks are used to derive self-guided loss functions which improve the CAM for better lesion segmentation. Our method achieves the Dice score of 0.5874 on the COVID-19 dataset and 0.4534 on the Liver Tumor Segmentation Challenge (LiTS) dataset.\",\"PeriodicalId\":6827,\"journal\":{\"name\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"27 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI52829.2022.9761552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了帮助临床医生更有效地诊断疾病和监测病变状况,自动病灶分割是一种令人信服的方法。由于获取像素级标注耗时长、成本高,弱监督学习已成为一个很有前途的趋势。近年来基于类激活映射(Class Activation Mapping, CAM)的研究在自然图像上取得了成功,但并没有充分利用医学图像的强度特性,因此性能可能不够好。在这项工作中,我们提出了一种基于CT强度聚类的自引导弱监督病灶分割框架。该方法充分利用CT强度表示材料密度的特性,通过强度聚类将像素点划分为不同的组。选择CAM确定的病变概率高的聚类生成病变遮罩。这种损伤掩模被用来推导自导向损失函数,从而改进CAM以获得更好的损伤分割。我们的方法在COVID-19数据集上的Dice得分为0.5874,在肝脏肿瘤分割挑战(LiTS)数据集上的Dice得分为0.4534。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weakly-Supervised Lesion Segmentation with Self-Guidance by CT Intensity Clustering
To aid clinicians diagnose diseases and monitor lesion conditions more efficiently, automated lesion segmentation is a convincing approach. As it is time-consuming and costly to obtain pixel-level annotations, weakly-supervised learning has become a promising trend. Recent works based on Class Activation Mapping (CAM) achieve success for natural images, but they have not fully utilized the intensity property in medical images such that the performance may not be good enough. In this work, we propose a novel weakly-supervised lesion segmentation framework with self-guidance by CT intensity clustering. The proposed method takes full advantages of the properties that CT intensity represents the density of materials and partitions pixels into different groups by intensity clustering. Clusters with high lesion probability determined by the CAM are selected to generate lesion masks. Such lesion masks are used to derive self-guided loss functions which improve the CAM for better lesion segmentation. Our method achieves the Dice score of 0.5874 on the COVID-19 dataset and 0.4534 on the Liver Tumor Segmentation Challenge (LiTS) dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信