{"title":"二维Sinh-Poisson方程多个爆破解的Morse指数","authors":"Ruggero Freddi","doi":"10.4208/ata.oa-2020-0037","DOIUrl":null,"url":null,"abstract":"In this paper we consider the Dirichlet problem \\begin{equation} \\label{iniz} \\begin{cases} -\\Delta u = \\rho^2 (e^{u} - e^{-u}) & \\text{ in } \\Omega\\\\ u=0 & \\text{ on } \\partial \\Omega, \\end{cases} \\end{equation} where $\\rho$ is a small parameter and $\\Omega$ is a $C^2$ bounded domain in $\\mathbb{R}^2$. [1] proves the existence of a $m$-point blow-up solution $u_\\rho$ jointly with its asymptotic behaviour. we compute the Morse index of $u_\\rho$ in terms of the Morse index of the associated Hamilton function of this problem. In addition, we give an asymptotic estimate for the first $4m$ eigenvalues and eigenfunctions.","PeriodicalId":29763,"journal":{"name":"Analysis in Theory and Applications","volume":"165 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morse Index of Multiple Blow-Up Solutions to the Two-Dimensional Sinh-Poisson Equation\",\"authors\":\"Ruggero Freddi\",\"doi\":\"10.4208/ata.oa-2020-0037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the Dirichlet problem \\\\begin{equation} \\\\label{iniz} \\\\begin{cases} -\\\\Delta u = \\\\rho^2 (e^{u} - e^{-u}) & \\\\text{ in } \\\\Omega\\\\\\\\ u=0 & \\\\text{ on } \\\\partial \\\\Omega, \\\\end{cases} \\\\end{equation} where $\\\\rho$ is a small parameter and $\\\\Omega$ is a $C^2$ bounded domain in $\\\\mathbb{R}^2$. [1] proves the existence of a $m$-point blow-up solution $u_\\\\rho$ jointly with its asymptotic behaviour. we compute the Morse index of $u_\\\\rho$ in terms of the Morse index of the associated Hamilton function of this problem. In addition, we give an asymptotic estimate for the first $4m$ eigenvalues and eigenfunctions.\",\"PeriodicalId\":29763,\"journal\":{\"name\":\"Analysis in Theory and Applications\",\"volume\":\"165 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis in Theory and Applications\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.4208/ata.oa-2020-0037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis in Theory and Applications","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.4208/ata.oa-2020-0037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文考虑了Dirichlet问题\begin{equation} \label{iniz} \begin{cases} -\Delta u = \rho^2 (e^{u} - e^{-u}) & \text{ in } \Omega\\ u=0 & \text{ on } \partial \Omega, \end{cases} \end{equation},其中$\rho$是一个小参数,$\Omega$是$\mathbb{R}^2$中的一个$C^2$有界域。[1]证明了一个$m$ -点爆破解$u_\rho$的存在性及其渐近性。我们根据这个问题的相关汉密尔顿函数的摩尔斯指数来计算$u_\rho$的摩尔斯指数。此外,我们给出了第一个$4m$特征值和特征函数的渐近估计。
Morse Index of Multiple Blow-Up Solutions to the Two-Dimensional Sinh-Poisson Equation
In this paper we consider the Dirichlet problem \begin{equation} \label{iniz} \begin{cases} -\Delta u = \rho^2 (e^{u} - e^{-u}) & \text{ in } \Omega\\ u=0 & \text{ on } \partial \Omega, \end{cases} \end{equation} where $\rho$ is a small parameter and $\Omega$ is a $C^2$ bounded domain in $\mathbb{R}^2$. [1] proves the existence of a $m$-point blow-up solution $u_\rho$ jointly with its asymptotic behaviour. we compute the Morse index of $u_\rho$ in terms of the Morse index of the associated Hamilton function of this problem. In addition, we give an asymptotic estimate for the first $4m$ eigenvalues and eigenfunctions.