可扩展共享内存MIMD架构上的体渲染

Jason Nieh, M. Levoy
{"title":"可扩展共享内存MIMD架构上的体渲染","authors":"Jason Nieh, M. Levoy","doi":"10.1145/147130.147141","DOIUrl":null,"url":null,"abstract":"Volume rendering is a useful visualization technique for understanding the large amounts of data generated in a variety of scientific disciplines. Routine use of this technique is currently limited by its computational expense. We have designed a parallel volume rendering algorithm for MIMD architectures based on ray tracing and a novel task queue image partitioning technique. The combination of ray tracing and MIMD architectures allows us to employ algorithmic optimizations such as hierarchical opacity enumeration, early ray termination, and adaptive image sampling. The use of task queue image partitioning makes these optimizations efficient in a parallel framework. We have implemented our algorithm on the Stanford DASH Multiprocessor, a scalable shared-memory MIMD machine. Its single address-space and coherent caches provide programming ease and good performance for our algorithm. With only a few days of programming effort, we have obtained nearly linear speedups and near real-time frame update rates on a 48 processor machine. Since DASH is constructed from Silicon Graphics multiprocessors, our code runs on any Silicon Graphics workstation without modification.","PeriodicalId":20479,"journal":{"name":"Proceedings of the 1992 workshop on Volume visualization","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"1992-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"161","resultStr":"{\"title\":\"Volume rendering on scalable shared-memory MIMD architectures\",\"authors\":\"Jason Nieh, M. Levoy\",\"doi\":\"10.1145/147130.147141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Volume rendering is a useful visualization technique for understanding the large amounts of data generated in a variety of scientific disciplines. Routine use of this technique is currently limited by its computational expense. We have designed a parallel volume rendering algorithm for MIMD architectures based on ray tracing and a novel task queue image partitioning technique. The combination of ray tracing and MIMD architectures allows us to employ algorithmic optimizations such as hierarchical opacity enumeration, early ray termination, and adaptive image sampling. The use of task queue image partitioning makes these optimizations efficient in a parallel framework. We have implemented our algorithm on the Stanford DASH Multiprocessor, a scalable shared-memory MIMD machine. Its single address-space and coherent caches provide programming ease and good performance for our algorithm. With only a few days of programming effort, we have obtained nearly linear speedups and near real-time frame update rates on a 48 processor machine. Since DASH is constructed from Silicon Graphics multiprocessors, our code runs on any Silicon Graphics workstation without modification.\",\"PeriodicalId\":20479,\"journal\":{\"name\":\"Proceedings of the 1992 workshop on Volume visualization\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"161\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1992 workshop on Volume visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/147130.147141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1992 workshop on Volume visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/147130.147141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 161

摘要

体绘制是一种有用的可视化技术,用于理解各种科学学科中生成的大量数据。这种技术的常规使用目前受到其计算费用的限制。我们设计了一种基于光线追踪的MIMD并行体绘制算法和一种新的任务队列图像划分技术。光线追踪和MIMD架构的结合使我们能够采用算法优化,如分层不透明度枚举,早期光线终止和自适应图像采样。任务队列映像分区的使用使这些优化在并行框架中变得高效。我们已经在斯坦福DASH多处理器上实现了我们的算法,这是一个可扩展的共享内存MIMD机器。它的单一地址空间和连贯缓存为我们的算法提供了编程的便利性和良好的性能。只需要几天的编程工作,我们就可以在48个处理器的机器上获得近乎线性的加速和近乎实时的帧更新速率。由于DASH是由Silicon Graphics多处理器构建的,因此我们的代码可以在任何Silicon Graphics工作站上运行而无需修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Volume rendering on scalable shared-memory MIMD architectures
Volume rendering is a useful visualization technique for understanding the large amounts of data generated in a variety of scientific disciplines. Routine use of this technique is currently limited by its computational expense. We have designed a parallel volume rendering algorithm for MIMD architectures based on ray tracing and a novel task queue image partitioning technique. The combination of ray tracing and MIMD architectures allows us to employ algorithmic optimizations such as hierarchical opacity enumeration, early ray termination, and adaptive image sampling. The use of task queue image partitioning makes these optimizations efficient in a parallel framework. We have implemented our algorithm on the Stanford DASH Multiprocessor, a scalable shared-memory MIMD machine. Its single address-space and coherent caches provide programming ease and good performance for our algorithm. With only a few days of programming effort, we have obtained nearly linear speedups and near real-time frame update rates on a 48 processor machine. Since DASH is constructed from Silicon Graphics multiprocessors, our code runs on any Silicon Graphics workstation without modification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信