{"title":"噪声中高斯-马尔可夫信号的内曼-皮尔逊检测:封闭误差指数及其性质","authors":"Y. Sung, L. Tong, H. Poor","doi":"10.1109/ISIT.2005.1523608","DOIUrl":null,"url":null,"abstract":"The performance of Neyman-Pearson detection of correlated stochastic signals using noisy observations is investigated via the error exponent for the miss probability with a fixed level. Using the state-space structure of the signal and observation model, a closed-form expression for the error exponent is derived, and the connection between the asymptotic behavior of the optimal detector and that of the Kalman filter is established. The properties of the error exponent are investigated for the scalar case. It is shown that the error exponent has distinct characteristics with respect to correlation strength: for signal-to-noise ratio (SNR) > 1 the error exponent decreases monotonically as the correlation becomes stronger, whereas for SNR < 1 there is an optimal correlation that maximizes the error exponent for a given SNR","PeriodicalId":92224,"journal":{"name":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","volume":"25 1","pages":"1568-1572"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"Neyman-Pearson Detection of Gauss-Markov Signals in Noise: Closed-Form Error Exponent and Properties\",\"authors\":\"Y. Sung, L. Tong, H. Poor\",\"doi\":\"10.1109/ISIT.2005.1523608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of Neyman-Pearson detection of correlated stochastic signals using noisy observations is investigated via the error exponent for the miss probability with a fixed level. Using the state-space structure of the signal and observation model, a closed-form expression for the error exponent is derived, and the connection between the asymptotic behavior of the optimal detector and that of the Kalman filter is established. The properties of the error exponent are investigated for the scalar case. It is shown that the error exponent has distinct characteristics with respect to correlation strength: for signal-to-noise ratio (SNR) > 1 the error exponent decreases monotonically as the correlation becomes stronger, whereas for SNR < 1 there is an optimal correlation that maximizes the error exponent for a given SNR\",\"PeriodicalId\":92224,\"journal\":{\"name\":\"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications\",\"volume\":\"25 1\",\"pages\":\"1568-1572\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2005.1523608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2005.1523608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neyman-Pearson Detection of Gauss-Markov Signals in Noise: Closed-Form Error Exponent and Properties
The performance of Neyman-Pearson detection of correlated stochastic signals using noisy observations is investigated via the error exponent for the miss probability with a fixed level. Using the state-space structure of the signal and observation model, a closed-form expression for the error exponent is derived, and the connection between the asymptotic behavior of the optimal detector and that of the Kalman filter is established. The properties of the error exponent are investigated for the scalar case. It is shown that the error exponent has distinct characteristics with respect to correlation strength: for signal-to-noise ratio (SNR) > 1 the error exponent decreases monotonically as the correlation becomes stronger, whereas for SNR < 1 there is an optimal correlation that maximizes the error exponent for a given SNR