关于小对称群和一些零星单群的覆盖数

IF 0.1 Q4 MATHEMATICS
L. Kappe, Daniela Nikolova-Popova, Eric Swartz
{"title":"关于小对称群和一些零星单群的覆盖数","authors":"L. Kappe, Daniela Nikolova-Popova, Eric Swartz","doi":"10.1515/gcc-2016-0010","DOIUrl":null,"url":null,"abstract":"Abstract A set of proper subgroups is a cover for a group if its union is the whole group. The minimal number of subgroups needed to cover G is called the covering number of G, denoted by σ ⁢ ( G ) ${\\sigma(G)}$ . Determining σ ⁢ ( G ) ${\\sigma(G)}$ is an open problem for many nonsolvable groups. For symmetric groups S n ${S_{n}}$ , Maróti determined σ ⁢ ( S n ) ${\\sigma(S_{n})}$ for odd n with the exception of n = 9 ${n=9}$ and gave estimates for n even. In this paper we determine σ ⁢ ( S n ) ${\\sigma(S_{n})}$ for n = 8 , 9 , 10 , 12 ${n=8,9,10,12}$ . In addition we find the covering number for the Mathieu group M 12 ${M_{12}}$ and improve an estimate given by Holmes for the Janko group J 1 ${J_{1}}$ .","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"287 1","pages":"135 - 154"},"PeriodicalIF":0.1000,"publicationDate":"2014-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"On the covering number of small symmetric groups and some sporadic simple groups\",\"authors\":\"L. Kappe, Daniela Nikolova-Popova, Eric Swartz\",\"doi\":\"10.1515/gcc-2016-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A set of proper subgroups is a cover for a group if its union is the whole group. The minimal number of subgroups needed to cover G is called the covering number of G, denoted by σ ⁢ ( G ) ${\\\\sigma(G)}$ . Determining σ ⁢ ( G ) ${\\\\sigma(G)}$ is an open problem for many nonsolvable groups. For symmetric groups S n ${S_{n}}$ , Maróti determined σ ⁢ ( S n ) ${\\\\sigma(S_{n})}$ for odd n with the exception of n = 9 ${n=9}$ and gave estimates for n even. In this paper we determine σ ⁢ ( S n ) ${\\\\sigma(S_{n})}$ for n = 8 , 9 , 10 , 12 ${n=8,9,10,12}$ . In addition we find the covering number for the Mathieu group M 12 ${M_{12}}$ and improve an estimate given by Holmes for the Janko group J 1 ${J_{1}}$ .\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"287 1\",\"pages\":\"135 - 154\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2014-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc-2016-0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2016-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 17

摘要

如果群的并集是整群,那么一组适当子群就是群的掩护。覆盖G所需的最小子群数称为G的覆盖数,用σ∑(G) ${\sigma(G)}$表示。确定σ _ (G) ${\sigma(G)}$是许多不可解群的开放问题。对于对称群S n ${S_{n}}$, Maróti确定了除n=9 ${n=9}$外的奇数n的∑(S n) ${\sigma(S_{n})}$,并给出了偶数n的估计。对于n=8,9,10,12 ${n=8,9,10,12}$,我们确定了σ (sn) ${\sigma(S_{n})}$。此外,我们找到了Mathieu群M 12 ${M_{12}}$的覆盖数,并改进了Holmes对Janko群J 1 ${J_{1}}$的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the covering number of small symmetric groups and some sporadic simple groups
Abstract A set of proper subgroups is a cover for a group if its union is the whole group. The minimal number of subgroups needed to cover G is called the covering number of G, denoted by σ ⁢ ( G ) ${\sigma(G)}$ . Determining σ ⁢ ( G ) ${\sigma(G)}$ is an open problem for many nonsolvable groups. For symmetric groups S n ${S_{n}}$ , Maróti determined σ ⁢ ( S n ) ${\sigma(S_{n})}$ for odd n with the exception of n = 9 ${n=9}$ and gave estimates for n even. In this paper we determine σ ⁢ ( S n ) ${\sigma(S_{n})}$ for n = 8 , 9 , 10 , 12 ${n=8,9,10,12}$ . In addition we find the covering number for the Mathieu group M 12 ${M_{12}}$ and improve an estimate given by Holmes for the Janko group J 1 ${J_{1}}$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信