浮头多流换热器沿长度的温度分布分析

M. Ahmad, Waseem Saeed, K. Javed
{"title":"浮头多流换热器沿长度的温度分布分析","authors":"M. Ahmad, Waseem Saeed, K. Javed","doi":"10.18178/ijcea.2021.12.3.790","DOIUrl":null,"url":null,"abstract":"Heat transfer between two streams is common and simple and well established and perfectly commercialized. Normally, the exchanger that is used for this purpose is shell and tube heat exchanger but in some industrial production unit where more than one reactant is to be preheated or pre-cooled for chemical reaction and same as post heating and post cooling required of multiple streams at same or different temperatures, Problem that is associated with such type shell and tube heat exchanger is that it can’t handle the multiple stream and for handling multiple streams we required more number of exchangers due to which capital cost increases and required more care of handling because the number of units increases. To overcome this problem, we need more than one heat sinks with one or more than one heat source that will minimize the covered volume per unit heat transfer area, the number of unit operation, operation time, man power and the capital cost with increasing thermal efficiency and heat utilization so to overcome this problem we need to move towards multi stream heat exchanger for handling multiple streams at once for heat exchange. Multi stream heat exchanger is opening of a new class of heat transfer equipment which deals more than two different streams for heat exchange. Such a way number of units can be reduced, which minimize time and space. With a little bit increase in complexity the operational cost will decrease and improve the thermal efficiency of heat transfer equipment, which minimize thermal losses and maximize the heat utilization which directly decrease the equipment size and capital cost. In the previous study we have discuss our research on the fabrication and Comparative Study of Floating Head (Triple pipe) Multi Stream Heat Exchanger with Shell & Tube This work is about the investigation involves the tentative examination of the heat exchange through the Floating Head Multi-Stream Heat Exchanger to evaluate the temperature distribution along the length, in which cool liquids are flowing through the inner and external pipe and hot liquid is moving through the central pipe of the exchanger.","PeriodicalId":13949,"journal":{"name":"International Journal of Chemical Engineering and Applications","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature Distribution Analysis along the Length of Floating Head Multi Stream Heat Exchanger\",\"authors\":\"M. Ahmad, Waseem Saeed, K. Javed\",\"doi\":\"10.18178/ijcea.2021.12.3.790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heat transfer between two streams is common and simple and well established and perfectly commercialized. Normally, the exchanger that is used for this purpose is shell and tube heat exchanger but in some industrial production unit where more than one reactant is to be preheated or pre-cooled for chemical reaction and same as post heating and post cooling required of multiple streams at same or different temperatures, Problem that is associated with such type shell and tube heat exchanger is that it can’t handle the multiple stream and for handling multiple streams we required more number of exchangers due to which capital cost increases and required more care of handling because the number of units increases. To overcome this problem, we need more than one heat sinks with one or more than one heat source that will minimize the covered volume per unit heat transfer area, the number of unit operation, operation time, man power and the capital cost with increasing thermal efficiency and heat utilization so to overcome this problem we need to move towards multi stream heat exchanger for handling multiple streams at once for heat exchange. Multi stream heat exchanger is opening of a new class of heat transfer equipment which deals more than two different streams for heat exchange. Such a way number of units can be reduced, which minimize time and space. With a little bit increase in complexity the operational cost will decrease and improve the thermal efficiency of heat transfer equipment, which minimize thermal losses and maximize the heat utilization which directly decrease the equipment size and capital cost. In the previous study we have discuss our research on the fabrication and Comparative Study of Floating Head (Triple pipe) Multi Stream Heat Exchanger with Shell & Tube This work is about the investigation involves the tentative examination of the heat exchange through the Floating Head Multi-Stream Heat Exchanger to evaluate the temperature distribution along the length, in which cool liquids are flowing through the inner and external pipe and hot liquid is moving through the central pipe of the exchanger.\",\"PeriodicalId\":13949,\"journal\":{\"name\":\"International Journal of Chemical Engineering and Applications\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Engineering and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18178/ijcea.2021.12.3.790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/ijcea.2021.12.3.790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

两流之间的传热是常见的、简单的、成熟的、完全商业化的。通常,用于此目的的换热器是管壳式换热器,但在某些工业生产装置中,需要对一种以上的反应物进行化学反应的预热或预冷,并且需要在相同或不同温度下对多个流进行后加热和后冷却。与这种类型的壳管式热交换器相关的问题是它不能处理多流,为了处理多流,我们需要更多的交换器数量,因为资本成本增加了,并且由于单元数量的增加,需要更多的处理。为了克服这个问题,我们需要一个或多个热源的多个散热器,以最大限度地减少单位传热面积的覆盖体积,单位操作次数,操作时间,人力和增加热效率和热利用率的资本成本,因此为了克服这个问题,我们需要转向多流热交换器,以便一次处理多个流进行热交换。多流换热器是一种处理两种以上不同流进行换热的新型换热设备。这样可以减少单位数量,从而最大限度地减少时间和空间。随着复杂性的一点点增加,运行成本将降低,并提高换热设备的热效率,从而最大限度地减少热损失,最大限度地提高热利用率,从而直接减少设备尺寸和资本成本。在之前的研究中,我们讨论了我们对壳管式浮头(三管)多流换热器的制造和对比研究的研究,这项工作是关于浮头多流换热器的热交换的初步研究,以评估温度沿长度的分布。其中,冷液体流经换热器的内外管,热液体流经换热器的中心管。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temperature Distribution Analysis along the Length of Floating Head Multi Stream Heat Exchanger
Heat transfer between two streams is common and simple and well established and perfectly commercialized. Normally, the exchanger that is used for this purpose is shell and tube heat exchanger but in some industrial production unit where more than one reactant is to be preheated or pre-cooled for chemical reaction and same as post heating and post cooling required of multiple streams at same or different temperatures, Problem that is associated with such type shell and tube heat exchanger is that it can’t handle the multiple stream and for handling multiple streams we required more number of exchangers due to which capital cost increases and required more care of handling because the number of units increases. To overcome this problem, we need more than one heat sinks with one or more than one heat source that will minimize the covered volume per unit heat transfer area, the number of unit operation, operation time, man power and the capital cost with increasing thermal efficiency and heat utilization so to overcome this problem we need to move towards multi stream heat exchanger for handling multiple streams at once for heat exchange. Multi stream heat exchanger is opening of a new class of heat transfer equipment which deals more than two different streams for heat exchange. Such a way number of units can be reduced, which minimize time and space. With a little bit increase in complexity the operational cost will decrease and improve the thermal efficiency of heat transfer equipment, which minimize thermal losses and maximize the heat utilization which directly decrease the equipment size and capital cost. In the previous study we have discuss our research on the fabrication and Comparative Study of Floating Head (Triple pipe) Multi Stream Heat Exchanger with Shell & Tube This work is about the investigation involves the tentative examination of the heat exchange through the Floating Head Multi-Stream Heat Exchanger to evaluate the temperature distribution along the length, in which cool liquids are flowing through the inner and external pipe and hot liquid is moving through the central pipe of the exchanger.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信