{"title":"具有纯二次边的两个自治一阶常微分方程的新代数可解系统","authors":"F. Calogero, R. Conte, F. Leyvraz","doi":"10.1063/5.0011257","DOIUrl":null,"url":null,"abstract":"We identify many new solvable subcases of the general dynamical system characterized by two autonomous first-order ordinary differential equations with purely quadratic right-hand sides; the solvable character of these dynamical systems amounting to the possibility to obtain the solution of their initial value problem via algebraic operations. Equivalently---by considering the analytic continuation of these systems to complex time---their algebraically solvable character corresponds to the fact that their general solution is either singlevalued or features only a finite number of algebraic branch points as functions of complex time (the independent variable). Thus our results provide a major enlargement of the class of solvable systems beyond those with singlevalued general solution identified by Garnier about 60 years ago. An interesting property of several of these new dynamical systems is the elementary character of their general solution, identifiable as the roots of a polynomial with explicitly obtainable time-dependent coefficients. We also mention that, via a well-known time-dependent change of (dependent and independent) variables featuring the imaginary parameter $% \\mathbf{i} \\omega $ (with $\\omega $ an arbitrary strictly positive real number), autonomous variants can be explicitly exhibited of each of the algebraically solvable models we identify: variants which all feature the remarkable property to be isochronous, i.e. their generic solution is periodic with a period that is a fixed integer multiple of the basic period $T=2\\pi/\\omega$.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"New algebraically solvable systems of two autonomous first-order ordinary differential equations with purely quadratic right-hand sides\",\"authors\":\"F. Calogero, R. Conte, F. Leyvraz\",\"doi\":\"10.1063/5.0011257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We identify many new solvable subcases of the general dynamical system characterized by two autonomous first-order ordinary differential equations with purely quadratic right-hand sides; the solvable character of these dynamical systems amounting to the possibility to obtain the solution of their initial value problem via algebraic operations. Equivalently---by considering the analytic continuation of these systems to complex time---their algebraically solvable character corresponds to the fact that their general solution is either singlevalued or features only a finite number of algebraic branch points as functions of complex time (the independent variable). Thus our results provide a major enlargement of the class of solvable systems beyond those with singlevalued general solution identified by Garnier about 60 years ago. An interesting property of several of these new dynamical systems is the elementary character of their general solution, identifiable as the roots of a polynomial with explicitly obtainable time-dependent coefficients. We also mention that, via a well-known time-dependent change of (dependent and independent) variables featuring the imaginary parameter $% \\\\mathbf{i} \\\\omega $ (with $\\\\omega $ an arbitrary strictly positive real number), autonomous variants can be explicitly exhibited of each of the algebraically solvable models we identify: variants which all feature the remarkable property to be isochronous, i.e. their generic solution is periodic with a period that is a fixed integer multiple of the basic period $T=2\\\\pi/\\\\omega$.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0011257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0011257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New algebraically solvable systems of two autonomous first-order ordinary differential equations with purely quadratic right-hand sides
We identify many new solvable subcases of the general dynamical system characterized by two autonomous first-order ordinary differential equations with purely quadratic right-hand sides; the solvable character of these dynamical systems amounting to the possibility to obtain the solution of their initial value problem via algebraic operations. Equivalently---by considering the analytic continuation of these systems to complex time---their algebraically solvable character corresponds to the fact that their general solution is either singlevalued or features only a finite number of algebraic branch points as functions of complex time (the independent variable). Thus our results provide a major enlargement of the class of solvable systems beyond those with singlevalued general solution identified by Garnier about 60 years ago. An interesting property of several of these new dynamical systems is the elementary character of their general solution, identifiable as the roots of a polynomial with explicitly obtainable time-dependent coefficients. We also mention that, via a well-known time-dependent change of (dependent and independent) variables featuring the imaginary parameter $% \mathbf{i} \omega $ (with $\omega $ an arbitrary strictly positive real number), autonomous variants can be explicitly exhibited of each of the algebraically solvable models we identify: variants which all feature the remarkable property to be isochronous, i.e. their generic solution is periodic with a period that is a fixed integer multiple of the basic period $T=2\pi/\omega$.