空间数据库中的聚类与知识发现

Xiaowei Xu, Martin Ester, Hans-Peter Kriegel, Jörg Sander
{"title":"空间数据库中的聚类与知识发现","authors":"Xiaowei Xu,&nbsp;Martin Ester,&nbsp;Hans-Peter Kriegel,&nbsp;Jörg Sander","doi":"10.1016/S0083-6656(97)00044-5","DOIUrl":null,"url":null,"abstract":"<div><p>In the past decades, clustering has been widely used in areas such as pattern recognition, data analysis, and image processing. Recently, clustering has been recognized as a useful method for knowledge discovery in spatial databases. To efficiently detect clusters from large spatial databases with a limited amount of available memory, special database techniques have been developed. In this article, we present a survey of these methods from a database perspective.</p></div>","PeriodicalId":101275,"journal":{"name":"Vistas in Astronomy","volume":"41 3","pages":"Pages 397-403"},"PeriodicalIF":0.0000,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0083-6656(97)00044-5","citationCount":"12","resultStr":"{\"title\":\"Clustering and knowledge discovery in spatial databases\",\"authors\":\"Xiaowei Xu,&nbsp;Martin Ester,&nbsp;Hans-Peter Kriegel,&nbsp;Jörg Sander\",\"doi\":\"10.1016/S0083-6656(97)00044-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the past decades, clustering has been widely used in areas such as pattern recognition, data analysis, and image processing. Recently, clustering has been recognized as a useful method for knowledge discovery in spatial databases. To efficiently detect clusters from large spatial databases with a limited amount of available memory, special database techniques have been developed. In this article, we present a survey of these methods from a database perspective.</p></div>\",\"PeriodicalId\":101275,\"journal\":{\"name\":\"Vistas in Astronomy\",\"volume\":\"41 3\",\"pages\":\"Pages 397-403\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0083-6656(97)00044-5\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vistas in Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0083665697000445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vistas in Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0083665697000445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在过去的几十年里,聚类在模式识别、数据分析和图像处理等领域得到了广泛的应用。近年来,聚类已成为空间数据库知识发现的一种有效方法。为了在有限的可用内存下有效地从大型空间数据库中检测集群,已经开发了特殊的数据库技术。在本文中,我们将从数据库的角度对这些方法进行概述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering and knowledge discovery in spatial databases

In the past decades, clustering has been widely used in areas such as pattern recognition, data analysis, and image processing. Recently, clustering has been recognized as a useful method for knowledge discovery in spatial databases. To efficiently detect clusters from large spatial databases with a limited amount of available memory, special database techniques have been developed. In this article, we present a survey of these methods from a database perspective.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信