时间和频率参考系统的鲁棒时钟集成

Qinghua Wang, F. Droz, P. Rochat
{"title":"时间和频率参考系统的鲁棒时钟集成","authors":"Qinghua Wang, F. Droz, P. Rochat","doi":"10.1109/FCS.2015.7138861","DOIUrl":null,"url":null,"abstract":"A robust clock ensemble is proposed for the time and frequency reference system to improve the robustness and performance of the system. Studies on the feasibility of hardware and algorithm approaches have been conducted. All clocks in the ensemble are locked in phase and frequency via the steering loop. The system performs corrections on the master clock in function of weighted averaging of clocks to generate one ensemble output, and the clock fault detection and compensation is implemented in real time with minimum three clocks powered. As the design has been demonstrated on an elegant breadboard of the Robust Onboard Frequency Reference Subsystem, this concept is proposed for the next-generation of Precise Timing Facility. Simulation results have demonstrated its capability and simplicity to provide a smooth and reliable timing or frequency output even in presence of clock feared events.","PeriodicalId":57667,"journal":{"name":"时间频率公报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Robust clock ensemble for time and frequency reference system\",\"authors\":\"Qinghua Wang, F. Droz, P. Rochat\",\"doi\":\"10.1109/FCS.2015.7138861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A robust clock ensemble is proposed for the time and frequency reference system to improve the robustness and performance of the system. Studies on the feasibility of hardware and algorithm approaches have been conducted. All clocks in the ensemble are locked in phase and frequency via the steering loop. The system performs corrections on the master clock in function of weighted averaging of clocks to generate one ensemble output, and the clock fault detection and compensation is implemented in real time with minimum three clocks powered. As the design has been demonstrated on an elegant breadboard of the Robust Onboard Frequency Reference Subsystem, this concept is proposed for the next-generation of Precise Timing Facility. Simulation results have demonstrated its capability and simplicity to provide a smooth and reliable timing or frequency output even in presence of clock feared events.\",\"PeriodicalId\":57667,\"journal\":{\"name\":\"时间频率公报\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"时间频率公报\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1109/FCS.2015.7138861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"时间频率公报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/FCS.2015.7138861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

为了提高时间和频率参考系统的鲁棒性和性能,提出了一种鲁棒时钟集成方案。对硬件和算法方法的可行性进行了研究。集合中的所有时钟都通过转向回路锁定在相位和频率上。该系统以时钟加权平均的方式对主时钟进行校正,产生一个集成输出,并以最少三个时钟供电的方式实时实现时钟故障检测和补偿。由于该设计已在稳健板载频率参考子系统的优雅面包板上进行了演示,因此该概念被提出用于下一代精确定时设备。仿真结果表明,即使在存在时钟恐惧事件的情况下,它也能提供平稳可靠的定时或频率输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust clock ensemble for time and frequency reference system
A robust clock ensemble is proposed for the time and frequency reference system to improve the robustness and performance of the system. Studies on the feasibility of hardware and algorithm approaches have been conducted. All clocks in the ensemble are locked in phase and frequency via the steering loop. The system performs corrections on the master clock in function of weighted averaging of clocks to generate one ensemble output, and the clock fault detection and compensation is implemented in real time with minimum three clocks powered. As the design has been demonstrated on an elegant breadboard of the Robust Onboard Frequency Reference Subsystem, this concept is proposed for the next-generation of Precise Timing Facility. Simulation results have demonstrated its capability and simplicity to provide a smooth and reliable timing or frequency output even in presence of clock feared events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1135
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信