{"title":"一阶方法的频域表示:一个简单而稳健的分析框架","authors":"Ioannis Anagnostides, Ioannis Panageas","doi":"10.1137/1.9781611977066.10","DOIUrl":null,"url":null,"abstract":"Motivated by recent applications in min-max optimization, we employ tools from nonlinear control theory in order to analyze a class of\"historical\"gradient-based methods, for which the next step lies in the span of the previously observed gradients within a time horizon. Specifically, we leverage techniques developed by Hu and Lessard (2017) to build a frequency-domain framework which reduces the analysis of such methods to numerically-solvable algebraic tasks, establishing linear convergence under a class of strongly monotone and co-coercive operators. On the applications' side, we focus on the Optimistic Gradient Descent (OGD) method, which augments the standard Gradient Descent with an additional past-gradient in the optimization step. The proposed framework leads to a simple and sharp analysis of OGD -- and generalizations thereof -- under a much broader regime of parameters. Notably, this characterization directly extends under adversarial noise in the observed value of the gradient. Moreover, our frequency-domain framework provides an exact quantitative comparison between simultaneous and alternating updates of OGD. An interesting byproduct is that OGD -- and variants thereof -- is an instance of PID control, arguably one of the most influential algorithms of the last century; this observation sheds more light to the stabilizing properties of\"optimism\".","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"38 1","pages":"131-160"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Frequency-Domain Representation of First-Order Methods: A Simple and Robust Framework of Analysis\",\"authors\":\"Ioannis Anagnostides, Ioannis Panageas\",\"doi\":\"10.1137/1.9781611977066.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by recent applications in min-max optimization, we employ tools from nonlinear control theory in order to analyze a class of\\\"historical\\\"gradient-based methods, for which the next step lies in the span of the previously observed gradients within a time horizon. Specifically, we leverage techniques developed by Hu and Lessard (2017) to build a frequency-domain framework which reduces the analysis of such methods to numerically-solvable algebraic tasks, establishing linear convergence under a class of strongly monotone and co-coercive operators. On the applications' side, we focus on the Optimistic Gradient Descent (OGD) method, which augments the standard Gradient Descent with an additional past-gradient in the optimization step. The proposed framework leads to a simple and sharp analysis of OGD -- and generalizations thereof -- under a much broader regime of parameters. Notably, this characterization directly extends under adversarial noise in the observed value of the gradient. Moreover, our frequency-domain framework provides an exact quantitative comparison between simultaneous and alternating updates of OGD. An interesting byproduct is that OGD -- and variants thereof -- is an instance of PID control, arguably one of the most influential algorithms of the last century; this observation sheds more light to the stabilizing properties of\\\"optimism\\\".\",\"PeriodicalId\":93491,\"journal\":{\"name\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"volume\":\"38 1\",\"pages\":\"131-160\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611977066.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611977066.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Frequency-Domain Representation of First-Order Methods: A Simple and Robust Framework of Analysis
Motivated by recent applications in min-max optimization, we employ tools from nonlinear control theory in order to analyze a class of"historical"gradient-based methods, for which the next step lies in the span of the previously observed gradients within a time horizon. Specifically, we leverage techniques developed by Hu and Lessard (2017) to build a frequency-domain framework which reduces the analysis of such methods to numerically-solvable algebraic tasks, establishing linear convergence under a class of strongly monotone and co-coercive operators. On the applications' side, we focus on the Optimistic Gradient Descent (OGD) method, which augments the standard Gradient Descent with an additional past-gradient in the optimization step. The proposed framework leads to a simple and sharp analysis of OGD -- and generalizations thereof -- under a much broader regime of parameters. Notably, this characterization directly extends under adversarial noise in the observed value of the gradient. Moreover, our frequency-domain framework provides an exact quantitative comparison between simultaneous and alternating updates of OGD. An interesting byproduct is that OGD -- and variants thereof -- is an instance of PID control, arguably one of the most influential algorithms of the last century; this observation sheds more light to the stabilizing properties of"optimism".