{"title":"用机器学习检测稳定抓点的三步模型","authors":"Constanze Schwan, W. Schenck","doi":"10.3233/ICA-210659","DOIUrl":null,"url":null,"abstract":"Robotic grasping in dynamic environments is still one of the main challenges in automation tasks. Advances in deep learning methods and computational power suggest that the problem of robotic grasping can be solved by using a huge amount of training data and deep networks. Despite these huge accomplishments, the acceptance and usage in real-world scenarios is still limited. This is mainly due to the fact that the collection of the training data is expensive, and that the trained network is a black box. While the collection of the training data can sometimes be facilitated by carrying it out in simulation, the trained networks, however, remain a black box. In this study, a three-step model is presented that profits both from the advantages of using a simulation approach and deep neural networks to identify and evaluate grasp points. In addition, it even offers an explanation for failed grasp attempts. The first step is to find all grasp points where the gripper can be lowered onto the table without colliding with the object. The second step is to determine, for the grasp points and gripper parameters from the first step, how the object moves while the gripper is closed. Finally, in the third step, for all grasp points from the second step, it is predicted whether the object slips out of the gripper during lifting. By this simplification, it is possible to understand for each grasp point why it is stable and – just as important – why others are unstable or not feasible. All of the models employed in each of the three steps and the resulting Overall Model are evaluated. The predicted grasp points from the Overall Model are compared to the grasp points determined analytically by a force-closure algorithm, to validate the stability of the predicted grasps.","PeriodicalId":50358,"journal":{"name":"Integrated Computer-Aided Engineering","volume":"48 1","pages":"349-367"},"PeriodicalIF":5.8000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A three-step model for the detection of stable grasp points with machine learning\",\"authors\":\"Constanze Schwan, W. Schenck\",\"doi\":\"10.3233/ICA-210659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robotic grasping in dynamic environments is still one of the main challenges in automation tasks. Advances in deep learning methods and computational power suggest that the problem of robotic grasping can be solved by using a huge amount of training data and deep networks. Despite these huge accomplishments, the acceptance and usage in real-world scenarios is still limited. This is mainly due to the fact that the collection of the training data is expensive, and that the trained network is a black box. While the collection of the training data can sometimes be facilitated by carrying it out in simulation, the trained networks, however, remain a black box. In this study, a three-step model is presented that profits both from the advantages of using a simulation approach and deep neural networks to identify and evaluate grasp points. In addition, it even offers an explanation for failed grasp attempts. The first step is to find all grasp points where the gripper can be lowered onto the table without colliding with the object. The second step is to determine, for the grasp points and gripper parameters from the first step, how the object moves while the gripper is closed. Finally, in the third step, for all grasp points from the second step, it is predicted whether the object slips out of the gripper during lifting. By this simplification, it is possible to understand for each grasp point why it is stable and – just as important – why others are unstable or not feasible. All of the models employed in each of the three steps and the resulting Overall Model are evaluated. The predicted grasp points from the Overall Model are compared to the grasp points determined analytically by a force-closure algorithm, to validate the stability of the predicted grasps.\",\"PeriodicalId\":50358,\"journal\":{\"name\":\"Integrated Computer-Aided Engineering\",\"volume\":\"48 1\",\"pages\":\"349-367\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2021-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrated Computer-Aided Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/ICA-210659\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Computer-Aided Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ICA-210659","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A three-step model for the detection of stable grasp points with machine learning
Robotic grasping in dynamic environments is still one of the main challenges in automation tasks. Advances in deep learning methods and computational power suggest that the problem of robotic grasping can be solved by using a huge amount of training data and deep networks. Despite these huge accomplishments, the acceptance and usage in real-world scenarios is still limited. This is mainly due to the fact that the collection of the training data is expensive, and that the trained network is a black box. While the collection of the training data can sometimes be facilitated by carrying it out in simulation, the trained networks, however, remain a black box. In this study, a three-step model is presented that profits both from the advantages of using a simulation approach and deep neural networks to identify and evaluate grasp points. In addition, it even offers an explanation for failed grasp attempts. The first step is to find all grasp points where the gripper can be lowered onto the table without colliding with the object. The second step is to determine, for the grasp points and gripper parameters from the first step, how the object moves while the gripper is closed. Finally, in the third step, for all grasp points from the second step, it is predicted whether the object slips out of the gripper during lifting. By this simplification, it is possible to understand for each grasp point why it is stable and – just as important – why others are unstable or not feasible. All of the models employed in each of the three steps and the resulting Overall Model are evaluated. The predicted grasp points from the Overall Model are compared to the grasp points determined analytically by a force-closure algorithm, to validate the stability of the predicted grasps.
期刊介绍:
Integrated Computer-Aided Engineering (ICAE) was founded in 1993. "Based on the premise that interdisciplinary thinking and synergistic collaboration of disciplines can solve complex problems, open new frontiers, and lead to true innovations and breakthroughs, the cornerstone of industrial competitiveness and advancement of the society" as noted in the inaugural issue of the journal.
The focus of ICAE is the integration of leading edge and emerging computer and information technologies for innovative solution of engineering problems. The journal fosters interdisciplinary research and presents a unique forum for innovative computer-aided engineering. It also publishes novel industrial applications of CAE, thus helping to bring new computational paradigms from research labs and classrooms to reality. Areas covered by the journal include (but are not limited to) artificial intelligence, advanced signal processing, biologically inspired computing, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, intelligent and adaptive systems, internet-based technologies, knowledge discovery and engineering, machine learning, mechatronics, mobile computing, multimedia technologies, networking, neural network computing, object-oriented systems, optimization and search, parallel processing, robotics virtual reality, and visualization techniques.