结合极化sentinel-1和ALOS-2/PALSAR-2影像进行淹没植被制图

S. Plank, Martin Jussi, S. Martinis, A. Twele
{"title":"结合极化sentinel-1和ALOS-2/PALSAR-2影像进行淹没植被制图","authors":"S. Plank, Martin Jussi, S. Martinis, A. Twele","doi":"10.1109/IGARSS.2017.8128303","DOIUrl":null,"url":null,"abstract":"This article presents a semi-automated methodology for mapping of flooded areas with a special focus on flooded vegetation based on polarimetric Synthetic Aperture Radar (SAR) data. C-band SAR data is well suited for mapping of open water areas, while L-band enables the extraction of detailed information of flooded vegetation. Here, dual-pol C-band data of Sentinel-1 (S-1) is combined with quad-pol L-band ALOS-2/PALSAR-2 data to enable an accurate mapping of the entire flooded area. The developed procedure combines polarimetric decomposition based unsupervised Wishart classification with object-based post-classification refinement as well as the integration of spatial contextual information and global auxiliary data. The methodology was tested at the Evros River (Greek/Turkish border region), where a flooding event occurred in spring 2015.","PeriodicalId":6466,"journal":{"name":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"19 1","pages":"5705-5708"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Combining polarimetric sentinel-1 and ALOS-2/PALSAR-2 imagery for mapping of flooded vegetation\",\"authors\":\"S. Plank, Martin Jussi, S. Martinis, A. Twele\",\"doi\":\"10.1109/IGARSS.2017.8128303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a semi-automated methodology for mapping of flooded areas with a special focus on flooded vegetation based on polarimetric Synthetic Aperture Radar (SAR) data. C-band SAR data is well suited for mapping of open water areas, while L-band enables the extraction of detailed information of flooded vegetation. Here, dual-pol C-band data of Sentinel-1 (S-1) is combined with quad-pol L-band ALOS-2/PALSAR-2 data to enable an accurate mapping of the entire flooded area. The developed procedure combines polarimetric decomposition based unsupervised Wishart classification with object-based post-classification refinement as well as the integration of spatial contextual information and global auxiliary data. The methodology was tested at the Evros River (Greek/Turkish border region), where a flooding event occurred in spring 2015.\",\"PeriodicalId\":6466,\"journal\":{\"name\":\"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"volume\":\"19 1\",\"pages\":\"5705-5708\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2017.8128303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2017.8128303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于偏振合成孔径雷达(SAR)数据的半自动化洪水地区制图方法,并特别关注洪水植被。c波段SAR数据非常适合于开阔水域的制图,而l波段则可以提取淹没植被的详细信息。在这里,Sentinel-1 (S-1)的双pol c波段数据与四pol l波段ALOS-2/PALSAR-2数据相结合,可以精确绘制整个淹没区域。该方法将基于极化分解的无监督Wishart分类与基于对象的分类后细化相结合,并集成了空间上下文信息和全局辅助数据。该方法在埃夫罗斯河(希腊/土耳其边境地区)进行了测试,该地区在2015年春季发生了洪水事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining polarimetric sentinel-1 and ALOS-2/PALSAR-2 imagery for mapping of flooded vegetation
This article presents a semi-automated methodology for mapping of flooded areas with a special focus on flooded vegetation based on polarimetric Synthetic Aperture Radar (SAR) data. C-band SAR data is well suited for mapping of open water areas, while L-band enables the extraction of detailed information of flooded vegetation. Here, dual-pol C-band data of Sentinel-1 (S-1) is combined with quad-pol L-band ALOS-2/PALSAR-2 data to enable an accurate mapping of the entire flooded area. The developed procedure combines polarimetric decomposition based unsupervised Wishart classification with object-based post-classification refinement as well as the integration of spatial contextual information and global auxiliary data. The methodology was tested at the Evros River (Greek/Turkish border region), where a flooding event occurred in spring 2015.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信