独立成分分析与遗传算法的元启发式混合

Q3 Arts and Humanities
J. Górriz, C. Puntonet, M. Salmerón, E. Lang
{"title":"独立成分分析与遗传算法的元启发式混合","authors":"J. Górriz, C. Puntonet, M. Salmerón, E. Lang","doi":"10.1109/ICECS.2004.1399733","DOIUrl":null,"url":null,"abstract":"We present a novel method for blindly separating unobservable independent component signals from their linear mixtures, using meta-heuristics such as genetic algorithms (GA) to minimize the nonconvex and nonlinear cost functions. This approach is very useful in many fields such as forecasting indexes in financial stock markets, where the search for independent components is the major task to include exogenous information into the learning machine. The presented GA is able to extract independent components at a faster rate than the previous independent component analysis algorithms based on higher order statistics (HOS), showing significant accuracy and robustness as the input space dimension increases.","PeriodicalId":38467,"journal":{"name":"Giornale di Storia Costituzionale","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meta-heuristics hybridizing independent component analysis with genetic algorithms\",\"authors\":\"J. Górriz, C. Puntonet, M. Salmerón, E. Lang\",\"doi\":\"10.1109/ICECS.2004.1399733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel method for blindly separating unobservable independent component signals from their linear mixtures, using meta-heuristics such as genetic algorithms (GA) to minimize the nonconvex and nonlinear cost functions. This approach is very useful in many fields such as forecasting indexes in financial stock markets, where the search for independent components is the major task to include exogenous information into the learning machine. The presented GA is able to extract independent components at a faster rate than the previous independent component analysis algorithms based on higher order statistics (HOS), showing significant accuracy and robustness as the input space dimension increases.\",\"PeriodicalId\":38467,\"journal\":{\"name\":\"Giornale di Storia Costituzionale\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Giornale di Storia Costituzionale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECS.2004.1399733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Giornale di Storia Costituzionale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.2004.1399733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的方法来盲分离不可观察的独立分量信号从他们的线性混合物,使用元启发式如遗传算法(GA)最小化非凸和非线性代价函数。这种方法在许多领域非常有用,例如预测金融股票市场的指数,其中寻找独立成分是将外生信息纳入学习机器的主要任务。与以往基于高阶统计量(HOS)的独立分量分析算法相比,该遗传算法能够以更快的速度提取独立分量,随着输入空间维数的增加,具有显著的准确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Meta-heuristics hybridizing independent component analysis with genetic algorithms
We present a novel method for blindly separating unobservable independent component signals from their linear mixtures, using meta-heuristics such as genetic algorithms (GA) to minimize the nonconvex and nonlinear cost functions. This approach is very useful in many fields such as forecasting indexes in financial stock markets, where the search for independent components is the major task to include exogenous information into the learning machine. The presented GA is able to extract independent components at a faster rate than the previous independent component analysis algorithms based on higher order statistics (HOS), showing significant accuracy and robustness as the input space dimension increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Giornale di Storia Costituzionale
Giornale di Storia Costituzionale Arts and Humanities-History
CiteScore
0.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信