f -正则奇点的基本群

IF 1.3 1区 数学 Q1 MATHEMATICS
Javier Carvajal-Rojas, Karl Schwede, Kevin Tucker
{"title":"f -正则奇点的基本群","authors":"Javier Carvajal-Rojas, Karl Schwede, Kevin Tucker","doi":"10.24033/asens.2370","DOIUrl":null,"url":null,"abstract":"We prove that the local etale fundamental group of a strongly $F$-regular singularity is finite (and likewise for the etale fundamental group of the complement of a codimension $\\geq 2$ set), analogous to results of Xu and Greb-Kebekus-Peternell for KLT singularities in characteristic zero. In fact our result is effective, we show that the reciprocal of the $F$-signature of the singularity gives a bound on the size of this fundamental group. To prove these results and their corollaries, we develop new transformation rules for the $F$-signature under finite etale-in-codimension-one extensions. As another consequence of these transformation rules, we also obtain purity of the branch locus over rings with mild singularities (particularly if the $F$-signature is $> 1/2$). Finally, we generalize our $F$-signature transformation rules to the context of pairs and not-necessarily etale-in-codimension-one extensions, obtaining an analog of another result of Xu.","PeriodicalId":50971,"journal":{"name":"Annales Scientifiques De L Ecole Normale Superieure","volume":"36 1","pages":"993-1016"},"PeriodicalIF":1.3000,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Fundamental groups of F-regular singularities via F-signature\",\"authors\":\"Javier Carvajal-Rojas, Karl Schwede, Kevin Tucker\",\"doi\":\"10.24033/asens.2370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the local etale fundamental group of a strongly $F$-regular singularity is finite (and likewise for the etale fundamental group of the complement of a codimension $\\\\geq 2$ set), analogous to results of Xu and Greb-Kebekus-Peternell for KLT singularities in characteristic zero. In fact our result is effective, we show that the reciprocal of the $F$-signature of the singularity gives a bound on the size of this fundamental group. To prove these results and their corollaries, we develop new transformation rules for the $F$-signature under finite etale-in-codimension-one extensions. As another consequence of these transformation rules, we also obtain purity of the branch locus over rings with mild singularities (particularly if the $F$-signature is $> 1/2$). Finally, we generalize our $F$-signature transformation rules to the context of pairs and not-necessarily etale-in-codimension-one extensions, obtaining an analog of another result of Xu.\",\"PeriodicalId\":50971,\"journal\":{\"name\":\"Annales Scientifiques De L Ecole Normale Superieure\",\"volume\":\"36 1\",\"pages\":\"993-1016\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2016-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Scientifiques De L Ecole Normale Superieure\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.24033/asens.2370\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Scientifiques De L Ecole Normale Superieure","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24033/asens.2370","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 33

摘要

我们证明了a的局部基本群是强的 $F$-正则奇点是有限的(余维补的基本群也是如此) $\geq 2$ 集合),类似于Xu和Greb-Kebekus-Peternell关于特征零点的KLT奇点的结果。事实上我们的结果是有效的,我们证明了的倒数 $F$奇点的特征给出了这个基本群大小的一个界。为了证明这些结果及其推论,我们发展了新的变换规则 $F$有限余维1扩展下的-签名。作为这些变换规则的另一个结果,我们还得到了具有轻微奇异性环上分支轨迹的纯度(特别是当 $F$-签名是 $> 1/2$). 最后,我们概括一下 $F$将签名变换规则引入到对和不一定在余维数为1的扩展中,得到了Xu的另一个结果的类比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fundamental groups of F-regular singularities via F-signature
We prove that the local etale fundamental group of a strongly $F$-regular singularity is finite (and likewise for the etale fundamental group of the complement of a codimension $\geq 2$ set), analogous to results of Xu and Greb-Kebekus-Peternell for KLT singularities in characteristic zero. In fact our result is effective, we show that the reciprocal of the $F$-signature of the singularity gives a bound on the size of this fundamental group. To prove these results and their corollaries, we develop new transformation rules for the $F$-signature under finite etale-in-codimension-one extensions. As another consequence of these transformation rules, we also obtain purity of the branch locus over rings with mild singularities (particularly if the $F$-signature is $> 1/2$). Finally, we generalize our $F$-signature transformation rules to the context of pairs and not-necessarily etale-in-codimension-one extensions, obtaining an analog of another result of Xu.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Annales scientifiques de l''École normale supérieure were founded in 1864 by Louis Pasteur. The journal dealt with subjects touching on Physics, Chemistry and Natural Sciences. Around the turn of the century, it was decided that the journal should be devoted to Mathematics. Today, the Annales are open to all fields of mathematics. The Editorial Board, with the help of referees, selects articles which are mathematically very substantial. The Journal insists on maintaining a tradition of clarity and rigour in the exposition. The Annales scientifiques de l''École normale supérieures have been published by Gauthier-Villars unto 1997, then by Elsevier from 1999 to 2007. Since January 2008, they are published by the Société Mathématique de France.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信