纳米粘土/有机填料增强聚合物杂化复合材料作为建筑、汽车和建筑应用的有前途的材料——最新进展综述

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES
Lucky Ogheneakpobo Ejeta
{"title":"纳米粘土/有机填料增强聚合物杂化复合材料作为建筑、汽车和建筑应用的有前途的材料——最新进展综述","authors":"Lucky Ogheneakpobo Ejeta","doi":"10.1080/09276440.2023.2220217","DOIUrl":null,"url":null,"abstract":"ABSTRACT Several research articles in the field of nanocomposite have revealed that organic fillers can be used as reinforcing agents for plastic materials in hybrid material production. Advancement in multifunctional materials is anticipated to grow with the advent of lightweight, low-cost, and sustainable materials with improved mechanical, fire retardancy, water resistance, and higher barrier properties. As reported in the literature, these performance properties could be obtained by reinforcing nanoclay/organic filler in polymeric matrices. In this report, the pretreatment techniques for overcoming the challenges of hybrid composite production are discussed in detail. The bonding mechanisms between the nanoclay and plastic materials are explained. The study gives an overview of the recent progress on multifunctional hybrid materials made using nanoclay/organic particulate fillers as reinforcements for polymer matrices intended for use in the automotive, building, and construction industries. GRAPHICAL ABSTRACT","PeriodicalId":10653,"journal":{"name":"Composite Interfaces","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nanoclay/organic filler-reinforced polymeric hybrid composites as promising materials for building, automotive, and construction applications- a state-of-the-art review\",\"authors\":\"Lucky Ogheneakpobo Ejeta\",\"doi\":\"10.1080/09276440.2023.2220217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Several research articles in the field of nanocomposite have revealed that organic fillers can be used as reinforcing agents for plastic materials in hybrid material production. Advancement in multifunctional materials is anticipated to grow with the advent of lightweight, low-cost, and sustainable materials with improved mechanical, fire retardancy, water resistance, and higher barrier properties. As reported in the literature, these performance properties could be obtained by reinforcing nanoclay/organic filler in polymeric matrices. In this report, the pretreatment techniques for overcoming the challenges of hybrid composite production are discussed in detail. The bonding mechanisms between the nanoclay and plastic materials are explained. The study gives an overview of the recent progress on multifunctional hybrid materials made using nanoclay/organic particulate fillers as reinforcements for polymer matrices intended for use in the automotive, building, and construction industries. GRAPHICAL ABSTRACT\",\"PeriodicalId\":10653,\"journal\":{\"name\":\"Composite Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09276440.2023.2220217\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09276440.2023.2220217","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanoclay/organic filler-reinforced polymeric hybrid composites as promising materials for building, automotive, and construction applications- a state-of-the-art review
ABSTRACT Several research articles in the field of nanocomposite have revealed that organic fillers can be used as reinforcing agents for plastic materials in hybrid material production. Advancement in multifunctional materials is anticipated to grow with the advent of lightweight, low-cost, and sustainable materials with improved mechanical, fire retardancy, water resistance, and higher barrier properties. As reported in the literature, these performance properties could be obtained by reinforcing nanoclay/organic filler in polymeric matrices. In this report, the pretreatment techniques for overcoming the challenges of hybrid composite production are discussed in detail. The bonding mechanisms between the nanoclay and plastic materials are explained. The study gives an overview of the recent progress on multifunctional hybrid materials made using nanoclay/organic particulate fillers as reinforcements for polymer matrices intended for use in the automotive, building, and construction industries. GRAPHICAL ABSTRACT
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composite Interfaces
Composite Interfaces 工程技术-材料科学:复合
CiteScore
5.00
自引率
3.80%
发文量
58
审稿时长
3 months
期刊介绍: Composite Interfaces publishes interdisciplinary scientific and engineering research articles on composite interfaces/interphases and their related phenomena. Presenting new concepts for the fundamental understanding of composite interface study, the journal balances interest in chemistry, physical properties, mechanical properties, molecular structures, characterization techniques and theories. Composite Interfaces covers a wide range of topics including - but not restricted to: -surface treatment of reinforcing fibers and fillers- effect of interface structure on mechanical properties, physical properties, curing and rheology- coupling agents- synthesis of matrices designed to promote adhesion- molecular and atomic characterization of interfaces- interfacial morphology- dynamic mechanical study of interphases- interfacial compatibilization- adsorption- tribology- composites with organic, inorganic and metallic materials- composites applied to aerospace, automotive, appliances, electronics, construction, marine, optical and biomedical fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信