用样条配置和张量积预处理求解全轨道动量表示中的Faddeev-Merkuriev方程

V. A. Gradusov, V. Roudnev, E. Yarevsky, S. Yakovlev
{"title":"用样条配置和张量积预处理求解全轨道动量表示中的Faddeev-Merkuriev方程","authors":"V. A. Gradusov, V. Roudnev, E. Yarevsky, S. Yakovlev","doi":"10.4208/CICP.OA-2020-0097","DOIUrl":null,"url":null,"abstract":"The computational approach for solving the Faddeev-Merkuriev equations in total orbital momentum representation is presented. These equations describe a system of three quantum charged particles and are widely used in bound state and scattering calculations. The approach is based on the spline collocation method and exploits intensively the tensor product form of discretized operators and preconditioner, which leads to a drastic economy in both computer resources and time.","PeriodicalId":8441,"journal":{"name":"arXiv: Atomic Physics","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Solving the Faddeev-Merkuriev equations in total orbital momentum representation via spline collocation and tensor product preconditioning\",\"authors\":\"V. A. Gradusov, V. Roudnev, E. Yarevsky, S. Yakovlev\",\"doi\":\"10.4208/CICP.OA-2020-0097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The computational approach for solving the Faddeev-Merkuriev equations in total orbital momentum representation is presented. These equations describe a system of three quantum charged particles and are widely used in bound state and scattering calculations. The approach is based on the spline collocation method and exploits intensively the tensor product form of discretized operators and preconditioner, which leads to a drastic economy in both computer resources and time.\",\"PeriodicalId\":8441,\"journal\":{\"name\":\"arXiv: Atomic Physics\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Atomic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4208/CICP.OA-2020-0097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Atomic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/CICP.OA-2020-0097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

给出了求解全轨道动量表示的Faddeev-Merkuriev方程的计算方法。这些方程描述了一个由三个量子带电粒子组成的系统,广泛应用于束缚态和散射计算。该方法以样条配置法为基础,充分利用离散算子和预条件的张量积形式,极大地节省了计算机资源和时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving the Faddeev-Merkuriev equations in total orbital momentum representation via spline collocation and tensor product preconditioning
The computational approach for solving the Faddeev-Merkuriev equations in total orbital momentum representation is presented. These equations describe a system of three quantum charged particles and are widely used in bound state and scattering calculations. The approach is based on the spline collocation method and exploits intensively the tensor product form of discretized operators and preconditioner, which leads to a drastic economy in both computer resources and time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信