向后半鞅进入汉堡湍流

Florent Nzissila, O. Moutsinga, Fulgence Eyi Obiang
{"title":"向后半鞅进入汉堡湍流","authors":"Florent Nzissila, O. Moutsinga, Fulgence Eyi Obiang","doi":"10.1063/5.0036721","DOIUrl":null,"url":null,"abstract":"In fluid dynamics governed by the one dimensional inviscid Burgers equation $\\partial_t u+u\\partial_x(u)=0$, the stirring is explained by the sticky particles model. A Markov process $([Z^1_t,Z^2_t],\\,t\\geq0)$ describes the motion of random turbulent intervals which evolve inside an other Markov process $([Z^3_t,Z^4_t],\\,t\\geq0)$, describing the motion of random clusters concerned with the turbulence. Then, the four velocity processes $(u(Z^i_t,t),\\,t\\geq0)$ are backward semi-martingales.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Backward semi-martingales into Burgers turbulence\",\"authors\":\"Florent Nzissila, O. Moutsinga, Fulgence Eyi Obiang\",\"doi\":\"10.1063/5.0036721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In fluid dynamics governed by the one dimensional inviscid Burgers equation $\\\\partial_t u+u\\\\partial_x(u)=0$, the stirring is explained by the sticky particles model. A Markov process $([Z^1_t,Z^2_t],\\\\,t\\\\geq0)$ describes the motion of random turbulent intervals which evolve inside an other Markov process $([Z^3_t,Z^4_t],\\\\,t\\\\geq0)$, describing the motion of random clusters concerned with the turbulence. Then, the four velocity processes $(u(Z^i_t,t),\\\\,t\\\\geq0)$ are backward semi-martingales.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0036721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0036721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在由一维无粘Burgers方程$\partial_t u+u\partial_x(u)=0$控制的流体动力学中,搅拌用粘性颗粒模型来解释。一个马尔可夫过程$([Z^1_t,Z^2_t],\,t\geq0)$描述了随机湍流区间的运动,它在另一个马尔可夫过程$([Z^3_t,Z^4_t],\,t\geq0)$中演化,描述了与湍流有关的随机簇的运动。然后,四种速度过程$(u(Z^i_t,t),\,t\geq0)$是逆向半鞅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Backward semi-martingales into Burgers turbulence
In fluid dynamics governed by the one dimensional inviscid Burgers equation $\partial_t u+u\partial_x(u)=0$, the stirring is explained by the sticky particles model. A Markov process $([Z^1_t,Z^2_t],\,t\geq0)$ describes the motion of random turbulent intervals which evolve inside an other Markov process $([Z^3_t,Z^4_t],\,t\geq0)$, describing the motion of random clusters concerned with the turbulence. Then, the four velocity processes $(u(Z^i_t,t),\,t\geq0)$ are backward semi-martingales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信