Top-N推荐系统的协同去噪自编码器

Yao Wu, Christopher DuBois, A. Zheng, M. Ester
{"title":"Top-N推荐系统的协同去噪自编码器","authors":"Yao Wu, Christopher DuBois, A. Zheng, M. Ester","doi":"10.1145/2835776.2835837","DOIUrl":null,"url":null,"abstract":"Most real-world recommender services measure their performance based on the top-N results shown to the end users. Thus, advances in top-N recommendation have far-ranging consequences in practical applications. In this paper, we present a novel method, called Collaborative Denoising Auto-Encoder (CDAE), for top-N recommendation that utilizes the idea of Denoising Auto-Encoders. We demonstrate that the proposed model is a generalization of several well-known collaborative filtering models but with more flexible components. Thorough experiments are conducted to understand the performance of CDAE under various component settings. Furthermore, experimental results on several public datasets demonstrate that CDAE consistently outperforms state-of-the-art top-N recommendation methods on a variety of common evaluation metrics.","PeriodicalId":20567,"journal":{"name":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"855","resultStr":"{\"title\":\"Collaborative Denoising Auto-Encoders for Top-N Recommender Systems\",\"authors\":\"Yao Wu, Christopher DuBois, A. Zheng, M. Ester\",\"doi\":\"10.1145/2835776.2835837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most real-world recommender services measure their performance based on the top-N results shown to the end users. Thus, advances in top-N recommendation have far-ranging consequences in practical applications. In this paper, we present a novel method, called Collaborative Denoising Auto-Encoder (CDAE), for top-N recommendation that utilizes the idea of Denoising Auto-Encoders. We demonstrate that the proposed model is a generalization of several well-known collaborative filtering models but with more flexible components. Thorough experiments are conducted to understand the performance of CDAE under various component settings. Furthermore, experimental results on several public datasets demonstrate that CDAE consistently outperforms state-of-the-art top-N recommendation methods on a variety of common evaluation metrics.\",\"PeriodicalId\":20567,\"journal\":{\"name\":\"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"855\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2835776.2835837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2835776.2835837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 855

摘要

大多数现实世界的推荐服务都是基于显示给最终用户的前n个结果来衡量它们的性能的。因此,top-N推荐的进步在实际应用中具有广泛的影响。在本文中,我们提出了一种新的方法,称为协同去噪自编码器(CDAE),用于top-N推荐,该方法利用了去噪自编码器的思想。我们证明了该模型是几种知名协同过滤模型的推广,但具有更灵活的组件。为了了解CDAE在不同组件设置下的性能,我们进行了深入的实验。此外,在几个公共数据集上的实验结果表明,CDAE在各种常见评估指标上始终优于最先进的top-N推荐方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collaborative Denoising Auto-Encoders for Top-N Recommender Systems
Most real-world recommender services measure their performance based on the top-N results shown to the end users. Thus, advances in top-N recommendation have far-ranging consequences in practical applications. In this paper, we present a novel method, called Collaborative Denoising Auto-Encoder (CDAE), for top-N recommendation that utilizes the idea of Denoising Auto-Encoders. We demonstrate that the proposed model is a generalization of several well-known collaborative filtering models but with more flexible components. Thorough experiments are conducted to understand the performance of CDAE under various component settings. Furthermore, experimental results on several public datasets demonstrate that CDAE consistently outperforms state-of-the-art top-N recommendation methods on a variety of common evaluation metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信