M / M /1-PS模型中以其他用户数量为条件的逗留时间

Qiang Zhen, C. Knessl
{"title":"M / M /1-PS模型中以其他用户数量为条件的逗留时间","authors":"Qiang Zhen, C. Knessl","doi":"10.1093/amrx/abq001","DOIUrl":null,"url":null,"abstract":"We consider the M/M/1 queue with processor sharing. We study the conditional sojourn time distribution of an arriving customer, conditioned on the number of other customers present. A new formula is obtained for the conditional sojourn time distribution, using a discrete Green’s function. This is shown to be equivalent to some classic results of Pollaczek and Vaulot from 1946. Then various asymptotic limits are studied, including large time and/or large number of customers present, and heavy traffic, where the arrival rate is only slightly less than the service rate.","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"32 1","pages":"142-167"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On Sojourn Times in the M / M /1-PS Model, Conditioned on the Number of Other Users\",\"authors\":\"Qiang Zhen, C. Knessl\",\"doi\":\"10.1093/amrx/abq001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the M/M/1 queue with processor sharing. We study the conditional sojourn time distribution of an arriving customer, conditioned on the number of other customers present. A new formula is obtained for the conditional sojourn time distribution, using a discrete Green’s function. This is shown to be equivalent to some classic results of Pollaczek and Vaulot from 1946. Then various asymptotic limits are studied, including large time and/or large number of customers present, and heavy traffic, where the arrival rate is only slightly less than the service rate.\",\"PeriodicalId\":89656,\"journal\":{\"name\":\"Applied mathematics research express : AMRX\",\"volume\":\"32 1\",\"pages\":\"142-167\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied mathematics research express : AMRX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/amrx/abq001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/amrx/abq001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们考虑具有处理器共享的M/M/1队列。我们研究了一个到达的顾客的条件逗留时间分布,以其他顾客的数量为条件。利用离散格林函数,得到了条件逗留时间分布的新公式。这与1946年Pollaczek和Vaulot的一些经典结果是等价的。然后研究了各种渐近极限,包括大时间和/或大量客户存在,以及交通繁忙,其中到达率仅略低于服务率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Sojourn Times in the M / M /1-PS Model, Conditioned on the Number of Other Users
We consider the M/M/1 queue with processor sharing. We study the conditional sojourn time distribution of an arriving customer, conditioned on the number of other customers present. A new formula is obtained for the conditional sojourn time distribution, using a discrete Green’s function. This is shown to be equivalent to some classic results of Pollaczek and Vaulot from 1946. Then various asymptotic limits are studied, including large time and/or large number of customers present, and heavy traffic, where the arrival rate is only slightly less than the service rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信