lODA

Q3 Computer Science
Huaicheng Li, Martin L. Putra, Ronald Shi, Xing Lin, G. Ganger, Haryadi S. Gunawi
{"title":"lODA","authors":"Huaicheng Li, Martin L. Putra, Ronald Shi, Xing Lin, G. Ganger, Haryadi S. Gunawi","doi":"10.1145/3477132.3483573","DOIUrl":null,"url":null,"abstract":"Predictable latency on flash storage is a long-pursuit goal, yet, unpredictability stays due to the unavoidable disturbance from many well-known SSD internal activities. To combat this issue, the recent NVMe IO Determinism (IOD) interface advocates host-level controls to SSD internal management tasks. While promising, challenges remain on how to exploit it for truly predictable performance. We present IODA, an I/O deterministic flash array design built on top of small but powerful extensions to the IOD interface for easy deployment. IODA exploits data redundancy in the context of IOD for a strong latency predictability contract. In IODA, SSDs are expected to quickly fail an I/O on purpose to allow predictable I/Os through proactive data reconstruction. In the case of concurrent internal operations, IODA introduces busy remaining time exposure and predictable-latency-window formulation to guarantee predictable data reconstructions. Overall, IODA only adds 5 new fields to the NVMe interface and a small modification in the flash firmware, while keeping most of the complexity in the host OS. Our evaluation shows that IODA improves the 95-99.99th latencies by up to 75x. IODA is also the nearest to the ideal, no disturbance case compared to 7 state-of-the-art preemption, suspension, GC coordination, partitioning, tiny-tail flash controller, prediction, and proactive approaches.","PeriodicalId":38935,"journal":{"name":"Operating Systems Review (ACM)","volume":"112 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"lODA\",\"authors\":\"Huaicheng Li, Martin L. Putra, Ronald Shi, Xing Lin, G. Ganger, Haryadi S. Gunawi\",\"doi\":\"10.1145/3477132.3483573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predictable latency on flash storage is a long-pursuit goal, yet, unpredictability stays due to the unavoidable disturbance from many well-known SSD internal activities. To combat this issue, the recent NVMe IO Determinism (IOD) interface advocates host-level controls to SSD internal management tasks. While promising, challenges remain on how to exploit it for truly predictable performance. We present IODA, an I/O deterministic flash array design built on top of small but powerful extensions to the IOD interface for easy deployment. IODA exploits data redundancy in the context of IOD for a strong latency predictability contract. In IODA, SSDs are expected to quickly fail an I/O on purpose to allow predictable I/Os through proactive data reconstruction. In the case of concurrent internal operations, IODA introduces busy remaining time exposure and predictable-latency-window formulation to guarantee predictable data reconstructions. Overall, IODA only adds 5 new fields to the NVMe interface and a small modification in the flash firmware, while keeping most of the complexity in the host OS. Our evaluation shows that IODA improves the 95-99.99th latencies by up to 75x. IODA is also the nearest to the ideal, no disturbance case compared to 7 state-of-the-art preemption, suspension, GC coordination, partitioning, tiny-tail flash controller, prediction, and proactive approaches.\",\"PeriodicalId\":38935,\"journal\":{\"name\":\"Operating Systems Review (ACM)\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operating Systems Review (ACM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3477132.3483573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operating Systems Review (ACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3477132.3483573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 21

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
lODA
Predictable latency on flash storage is a long-pursuit goal, yet, unpredictability stays due to the unavoidable disturbance from many well-known SSD internal activities. To combat this issue, the recent NVMe IO Determinism (IOD) interface advocates host-level controls to SSD internal management tasks. While promising, challenges remain on how to exploit it for truly predictable performance. We present IODA, an I/O deterministic flash array design built on top of small but powerful extensions to the IOD interface for easy deployment. IODA exploits data redundancy in the context of IOD for a strong latency predictability contract. In IODA, SSDs are expected to quickly fail an I/O on purpose to allow predictable I/Os through proactive data reconstruction. In the case of concurrent internal operations, IODA introduces busy remaining time exposure and predictable-latency-window formulation to guarantee predictable data reconstructions. Overall, IODA only adds 5 new fields to the NVMe interface and a small modification in the flash firmware, while keeping most of the complexity in the host OS. Our evaluation shows that IODA improves the 95-99.99th latencies by up to 75x. IODA is also the nearest to the ideal, no disturbance case compared to 7 state-of-the-art preemption, suspension, GC coordination, partitioning, tiny-tail flash controller, prediction, and proactive approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operating Systems Review (ACM)
Operating Systems Review (ACM) Computer Science-Computer Networks and Communications
CiteScore
2.80
自引率
0.00%
发文量
10
期刊介绍: Operating Systems Review (OSR) is a publication of the ACM Special Interest Group on Operating Systems (SIGOPS), whose scope of interest includes: computer operating systems and architecture for multiprogramming, multiprocessing, and time sharing; resource management; evaluation and simulation; reliability, integrity, and security of data; communications among computing processors; and computer system modeling and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信