具有动力边界条件的热方程大扩散极限下的收敛速度

Asymptot. Anal. Pub Date : 2018-06-16 DOI:10.3233/ASY-181517
M. Fila, Kazuhiro Ishige, Tatsuki Kawakami, J. Lankeit
{"title":"具有动力边界条件的热方程大扩散极限下的收敛速度","authors":"M. Fila, Kazuhiro Ishige, Tatsuki Kawakami, J. Lankeit","doi":"10.3233/ASY-181517","DOIUrl":null,"url":null,"abstract":"We study the heat equation on a half-space or on an exterior domain with a linear dynamical boundary condition. Our main aim is to establish the rate of convergence to solutions of the Laplace equation with the same dynamical boundary condition as the diffusion coefficient tends to infinity.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"34 1","pages":"37-57"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Rate of convergence in the large diffusion limit for the heat equation with a dynamical boundary condition\",\"authors\":\"M. Fila, Kazuhiro Ishige, Tatsuki Kawakami, J. Lankeit\",\"doi\":\"10.3233/ASY-181517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the heat equation on a half-space or on an exterior domain with a linear dynamical boundary condition. Our main aim is to establish the rate of convergence to solutions of the Laplace equation with the same dynamical boundary condition as the diffusion coefficient tends to infinity.\",\"PeriodicalId\":8603,\"journal\":{\"name\":\"Asymptot. Anal.\",\"volume\":\"34 1\",\"pages\":\"37-57\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptot. Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ASY-181517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-181517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研究了具有线性动力学边界条件的半空间和外域上的热方程。我们的主要目的是建立与扩散系数趋于无穷时具有相同动力学边界条件的拉普拉斯方程解的收敛速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rate of convergence in the large diffusion limit for the heat equation with a dynamical boundary condition
We study the heat equation on a half-space or on an exterior domain with a linear dynamical boundary condition. Our main aim is to establish the rate of convergence to solutions of the Laplace equation with the same dynamical boundary condition as the diffusion coefficient tends to infinity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信