{"title":"船用螺旋桨流固耦合分析方法的比较","authors":"W. Rehman, S. Paboeuf, J. P. Tomy","doi":"10.1115/power2021-64369","DOIUrl":null,"url":null,"abstract":"\n The performance of the propeller is crucial to determine the energy-efficiency of a vessel. Fluid-Structure Interactions (FSI) analysis is one of the widely used methods to determine the hydrodynamic performance of marine propellers. This article is about the validation of a design assessment tool known as ComPropApp which is developed by Cooperative Research Ships (CRS) partners. ComPropApp is a specially designed tool for the FSI analysis of isotropic and composite marine propellers by doing explicit two-way coupling of the BEM-FEM solvers. The Boundary Element Method (BEM) solver of ComPropApp gives it an edge over Reynolds Averaged Navier Stokes Equations (RANSE) solvers in terms of computation time and cost. Hence, it is suitable for the initial design stage. The propeller used in this study is developed under the French Research Project; FabHeli.\n The validation is done by performing different types of FSI analysis through commercial RANSE solver (STAR-CCM+) and FEM solver (FEMAP) for only one inflow velocity of the open water case which is 10.3 m/s. The fluid solver of ComPropApp (PROCAL) is a Boundary Element Method (BEM) solver that is based on the potential flow theory while the structural solver (TRIDENT) is a FEM solver. The study is divided into four different cases; BEM-FEM one-way coupled FSI analysis, RANSE-FEM one-way coupled FSI analysis, BEM-FEM explicit two-way coupled FSI analysis with ComPropApp and RANSE-FEM implicit two-way coupled FSI analysis with STAR-CCM+. The calculated values of stresses, displacement, and forces from all the methods are compared and the conclusion is drawn.","PeriodicalId":8567,"journal":{"name":"ASME 2021 Power Conference","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparison of Different Fluid-Structure Interaction Analysis Techniques for the Marine Propeller\",\"authors\":\"W. Rehman, S. Paboeuf, J. P. Tomy\",\"doi\":\"10.1115/power2021-64369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The performance of the propeller is crucial to determine the energy-efficiency of a vessel. Fluid-Structure Interactions (FSI) analysis is one of the widely used methods to determine the hydrodynamic performance of marine propellers. This article is about the validation of a design assessment tool known as ComPropApp which is developed by Cooperative Research Ships (CRS) partners. ComPropApp is a specially designed tool for the FSI analysis of isotropic and composite marine propellers by doing explicit two-way coupling of the BEM-FEM solvers. The Boundary Element Method (BEM) solver of ComPropApp gives it an edge over Reynolds Averaged Navier Stokes Equations (RANSE) solvers in terms of computation time and cost. Hence, it is suitable for the initial design stage. The propeller used in this study is developed under the French Research Project; FabHeli.\\n The validation is done by performing different types of FSI analysis through commercial RANSE solver (STAR-CCM+) and FEM solver (FEMAP) for only one inflow velocity of the open water case which is 10.3 m/s. The fluid solver of ComPropApp (PROCAL) is a Boundary Element Method (BEM) solver that is based on the potential flow theory while the structural solver (TRIDENT) is a FEM solver. The study is divided into four different cases; BEM-FEM one-way coupled FSI analysis, RANSE-FEM one-way coupled FSI analysis, BEM-FEM explicit two-way coupled FSI analysis with ComPropApp and RANSE-FEM implicit two-way coupled FSI analysis with STAR-CCM+. The calculated values of stresses, displacement, and forces from all the methods are compared and the conclusion is drawn.\",\"PeriodicalId\":8567,\"journal\":{\"name\":\"ASME 2021 Power Conference\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2021 Power Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/power2021-64369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2021 Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/power2021-64369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Comparison of Different Fluid-Structure Interaction Analysis Techniques for the Marine Propeller
The performance of the propeller is crucial to determine the energy-efficiency of a vessel. Fluid-Structure Interactions (FSI) analysis is one of the widely used methods to determine the hydrodynamic performance of marine propellers. This article is about the validation of a design assessment tool known as ComPropApp which is developed by Cooperative Research Ships (CRS) partners. ComPropApp is a specially designed tool for the FSI analysis of isotropic and composite marine propellers by doing explicit two-way coupling of the BEM-FEM solvers. The Boundary Element Method (BEM) solver of ComPropApp gives it an edge over Reynolds Averaged Navier Stokes Equations (RANSE) solvers in terms of computation time and cost. Hence, it is suitable for the initial design stage. The propeller used in this study is developed under the French Research Project; FabHeli.
The validation is done by performing different types of FSI analysis through commercial RANSE solver (STAR-CCM+) and FEM solver (FEMAP) for only one inflow velocity of the open water case which is 10.3 m/s. The fluid solver of ComPropApp (PROCAL) is a Boundary Element Method (BEM) solver that is based on the potential flow theory while the structural solver (TRIDENT) is a FEM solver. The study is divided into four different cases; BEM-FEM one-way coupled FSI analysis, RANSE-FEM one-way coupled FSI analysis, BEM-FEM explicit two-way coupled FSI analysis with ComPropApp and RANSE-FEM implicit two-way coupled FSI analysis with STAR-CCM+. The calculated values of stresses, displacement, and forces from all the methods are compared and the conclusion is drawn.