A. Aliyev, Bo Zhou, Peter Hevesi, Marco Hirsch, P. Lukowicz
{"title":"HeadgearX","authors":"A. Aliyev, Bo Zhou, Peter Hevesi, Marco Hirsch, P. Lukowicz","doi":"10.1145/3410530.3414326","DOIUrl":null,"url":null,"abstract":"This work demonstrates a connected smart helmet platform, HeadgearX, aimed at improving personnel safety and real-time monitoring of construction sites. The smart helmet hardware design is driven by flexible and expandable sensing and actuating capabilities to adapt to various workplace requirements and functionalities. In our demonstrator, the system consists of ten different sensors, visual and haptic feedback mechanism, and Bluetooth connectivity. A companion Android application is also developed to add further functionalities including those configurable over-the-air. The construction project supervisors can monitor all on-site personnel's real-time statuses from a central web server which communicates to individual HeadgearX helmets via the companion app. Several use case scenarios are demonstrated as examples, while further specific functionalities can be added into HeadgearX by either software re-configurations with the existing system or hardware modifications.","PeriodicalId":7183,"journal":{"name":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","volume":"117 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"HeadgearX\",\"authors\":\"A. Aliyev, Bo Zhou, Peter Hevesi, Marco Hirsch, P. Lukowicz\",\"doi\":\"10.1145/3410530.3414326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work demonstrates a connected smart helmet platform, HeadgearX, aimed at improving personnel safety and real-time monitoring of construction sites. The smart helmet hardware design is driven by flexible and expandable sensing and actuating capabilities to adapt to various workplace requirements and functionalities. In our demonstrator, the system consists of ten different sensors, visual and haptic feedback mechanism, and Bluetooth connectivity. A companion Android application is also developed to add further functionalities including those configurable over-the-air. The construction project supervisors can monitor all on-site personnel's real-time statuses from a central web server which communicates to individual HeadgearX helmets via the companion app. Several use case scenarios are demonstrated as examples, while further specific functionalities can be added into HeadgearX by either software re-configurations with the existing system or hardware modifications.\",\"PeriodicalId\":7183,\"journal\":{\"name\":\"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3410530.3414326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3410530.3414326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This work demonstrates a connected smart helmet platform, HeadgearX, aimed at improving personnel safety and real-time monitoring of construction sites. The smart helmet hardware design is driven by flexible and expandable sensing and actuating capabilities to adapt to various workplace requirements and functionalities. In our demonstrator, the system consists of ten different sensors, visual and haptic feedback mechanism, and Bluetooth connectivity. A companion Android application is also developed to add further functionalities including those configurable over-the-air. The construction project supervisors can monitor all on-site personnel's real-time statuses from a central web server which communicates to individual HeadgearX helmets via the companion app. Several use case scenarios are demonstrated as examples, while further specific functionalities can be added into HeadgearX by either software re-configurations with the existing system or hardware modifications.