倾斜旋转对拟南芥幼苗热休克反应的影响

L. Kozeko, D. Buy, Y. Pirko, Y. Blume, E. Kordyum
{"title":"倾斜旋转对拟南芥幼苗热休克反应的影响","authors":"L. Kozeko, D. Buy, Y. Pirko, Y. Blume, E. Kordyum","doi":"10.2478/GSR-2018-0001","DOIUrl":null,"url":null,"abstract":"Abstract Clinorotation used to simulate microgravity effects in ground-based experiments is considered as a mild stress factor for plants. We have assumed that it might influence the plant tolerance to other stressful factors. To test this, Arabidopsis thaliana seedlings were grown on a horizontal clinostat (2 rpm) or under stationary conditions (control), and then were subjected to heat treatment. The kinetics of gene expression of cytosolic HSP70s and HSP90s during exposure to 37°C for 0.5-2 h was examined by RT-qPCR to estimate level of the heat shock reaction. It was shown that clinorotation caused the minor increase in transcript abundance of five AtHSP70s and AtHSP90-1 under normal temperature, as well as a faster onset and enhancement of their induction during heat shock. The heat tolerance was evaluated as a function of seedling survival after exposure to 45°C for 45 min. Seedlings grown under clinorotation were determined to withstand heat treatment better than seedlings grown under stationary conditions. The obtained data support the assumption that clinorotation may provide cross-protection of plants against fluctuations in environmental conditions.","PeriodicalId":90510,"journal":{"name":"Gravitational and space research : publication of the American Society for Gravitational and Space Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Clinorotation Affects Induction of the Heat Shock Response in Arabidopsis thaliana Seedlings\",\"authors\":\"L. Kozeko, D. Buy, Y. Pirko, Y. Blume, E. Kordyum\",\"doi\":\"10.2478/GSR-2018-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Clinorotation used to simulate microgravity effects in ground-based experiments is considered as a mild stress factor for plants. We have assumed that it might influence the plant tolerance to other stressful factors. To test this, Arabidopsis thaliana seedlings were grown on a horizontal clinostat (2 rpm) or under stationary conditions (control), and then were subjected to heat treatment. The kinetics of gene expression of cytosolic HSP70s and HSP90s during exposure to 37°C for 0.5-2 h was examined by RT-qPCR to estimate level of the heat shock reaction. It was shown that clinorotation caused the minor increase in transcript abundance of five AtHSP70s and AtHSP90-1 under normal temperature, as well as a faster onset and enhancement of their induction during heat shock. The heat tolerance was evaluated as a function of seedling survival after exposure to 45°C for 45 min. Seedlings grown under clinorotation were determined to withstand heat treatment better than seedlings grown under stationary conditions. The obtained data support the assumption that clinorotation may provide cross-protection of plants against fluctuations in environmental conditions.\",\"PeriodicalId\":90510,\"journal\":{\"name\":\"Gravitational and space research : publication of the American Society for Gravitational and Space Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gravitational and space research : publication of the American Society for Gravitational and Space Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/GSR-2018-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gravitational and space research : publication of the American Society for Gravitational and Space Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/GSR-2018-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

摘要:在地面实验中,倾斜旋转被认为是植物的轻度胁迫因子,用于模拟微重力效应。我们假设它可能会影响植物对其他压力因素的耐受性。为了验证这一点,拟南芥幼苗在水平恒温器(2rpm)或固定条件下(对照)生长,然后进行热处理。通过RT-qPCR检测细胞内hsp70和hsp90基因在37℃下0.5 ~ 2 h的表达动力学,以估计热休克反应的水平。结果表明,在常温下,温度升高导致5种athsp70和AtHSP90-1转录本丰度轻微增加,而在热休克时,这些转录本的启动速度更快,诱导能力增强。在45°C下暴露45分钟后,以幼苗存活率的函数来评估耐热性。在恒温条件下生长的幼苗比在固定条件下生长的幼苗更能承受热处理。获得的数据支持这样一种假设,即变色可以提供植物对环境条件波动的交叉保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clinorotation Affects Induction of the Heat Shock Response in Arabidopsis thaliana Seedlings
Abstract Clinorotation used to simulate microgravity effects in ground-based experiments is considered as a mild stress factor for plants. We have assumed that it might influence the plant tolerance to other stressful factors. To test this, Arabidopsis thaliana seedlings were grown on a horizontal clinostat (2 rpm) or under stationary conditions (control), and then were subjected to heat treatment. The kinetics of gene expression of cytosolic HSP70s and HSP90s during exposure to 37°C for 0.5-2 h was examined by RT-qPCR to estimate level of the heat shock reaction. It was shown that clinorotation caused the minor increase in transcript abundance of five AtHSP70s and AtHSP90-1 under normal temperature, as well as a faster onset and enhancement of their induction during heat shock. The heat tolerance was evaluated as a function of seedling survival after exposure to 45°C for 45 min. Seedlings grown under clinorotation were determined to withstand heat treatment better than seedlings grown under stationary conditions. The obtained data support the assumption that clinorotation may provide cross-protection of plants against fluctuations in environmental conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信