{"title":"硫化物掺杂氧化钴纳米球作为析氧反应的高效电催化剂","authors":"Qi He","doi":"10.4208/JAMS.010819.022419A","DOIUrl":null,"url":null,"abstract":"Electrochemical water splitting has been known as a promising and environmental approach to produce hydrogen by avoiding relying on fossil fuels. Unfortunately, the efficient and large-scale H2 production is still hindered by the sluggish kinetics of the oxygen evolution reaction (OER) at the anode side of a water electrolyzer. Herein, we report a novel amorphous sulfide doped cobalt oxide (amorphous Co-S-O) nanosphere as an efficient electrocatalyst for OER. The Co-S-O electrode exhibits high HER activity and good","PeriodicalId":15131,"journal":{"name":"Journal of Atomic and Molecular Sciences","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sulfide doped cobalt oxide nanosphere as a highly efficient electrocatalyst for oxygen evolution reaction\",\"authors\":\"Qi He\",\"doi\":\"10.4208/JAMS.010819.022419A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrochemical water splitting has been known as a promising and environmental approach to produce hydrogen by avoiding relying on fossil fuels. Unfortunately, the efficient and large-scale H2 production is still hindered by the sluggish kinetics of the oxygen evolution reaction (OER) at the anode side of a water electrolyzer. Herein, we report a novel amorphous sulfide doped cobalt oxide (amorphous Co-S-O) nanosphere as an efficient electrocatalyst for OER. The Co-S-O electrode exhibits high HER activity and good\",\"PeriodicalId\":15131,\"journal\":{\"name\":\"Journal of Atomic and Molecular Sciences\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atomic and Molecular Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4208/JAMS.010819.022419A\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atomic and Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/JAMS.010819.022419A","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sulfide doped cobalt oxide nanosphere as a highly efficient electrocatalyst for oxygen evolution reaction
Electrochemical water splitting has been known as a promising and environmental approach to produce hydrogen by avoiding relying on fossil fuels. Unfortunately, the efficient and large-scale H2 production is still hindered by the sluggish kinetics of the oxygen evolution reaction (OER) at the anode side of a water electrolyzer. Herein, we report a novel amorphous sulfide doped cobalt oxide (amorphous Co-S-O) nanosphere as an efficient electrocatalyst for OER. The Co-S-O electrode exhibits high HER activity and good