{"title":"用形态学方法检测检眼镜图像中的视网膜血管","authors":"Jyotiprava Dash, N. Bhoi","doi":"10.5565/REV/ELCVIA.913","DOIUrl":null,"url":null,"abstract":"Accurate segmentation of retinal blood vessels is an essential task for diagnosis of various pathological disorders. In this paper, a novel method has been introduced for segmenting retinal blood vessels which involves pre-processing, segmentation and post-processing. The pre-processing stage enhanced the image using contrast limited adaptive histogram equalization and 2D Gabor wavelet. The enhanced image is segmented using geodesic operators and a final segmentation output is obtained by applying a post-processing stage that involves hole filling and removal of isolated pixels. The performance of the proposed method is evaluated on the publicly available Digital retinal images for vessel extraction (DRIVE) and High-resolution fundus (HRF) databases using five different measurements and experimental analysis shows that the proposed method reach an average accuracy of 0.9541 on DRIVE database and 0.9568, 0.9478 and 0.9613 on HRF database with healthy, diabetic retinopathy (DR) and glaucomatous images respectively.","PeriodicalId":38711,"journal":{"name":"Electronic Letters on Computer Vision and Image Analysis","volume":"137 1","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Detection of retinal blood vessels from ophthalmoscope images using morphological approach\",\"authors\":\"Jyotiprava Dash, N. Bhoi\",\"doi\":\"10.5565/REV/ELCVIA.913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate segmentation of retinal blood vessels is an essential task for diagnosis of various pathological disorders. In this paper, a novel method has been introduced for segmenting retinal blood vessels which involves pre-processing, segmentation and post-processing. The pre-processing stage enhanced the image using contrast limited adaptive histogram equalization and 2D Gabor wavelet. The enhanced image is segmented using geodesic operators and a final segmentation output is obtained by applying a post-processing stage that involves hole filling and removal of isolated pixels. The performance of the proposed method is evaluated on the publicly available Digital retinal images for vessel extraction (DRIVE) and High-resolution fundus (HRF) databases using five different measurements and experimental analysis shows that the proposed method reach an average accuracy of 0.9541 on DRIVE database and 0.9568, 0.9478 and 0.9613 on HRF database with healthy, diabetic retinopathy (DR) and glaucomatous images respectively.\",\"PeriodicalId\":38711,\"journal\":{\"name\":\"Electronic Letters on Computer Vision and Image Analysis\",\"volume\":\"137 1\",\"pages\":\"1-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Letters on Computer Vision and Image Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5565/REV/ELCVIA.913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Letters on Computer Vision and Image Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5565/REV/ELCVIA.913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
Detection of retinal blood vessels from ophthalmoscope images using morphological approach
Accurate segmentation of retinal blood vessels is an essential task for diagnosis of various pathological disorders. In this paper, a novel method has been introduced for segmenting retinal blood vessels which involves pre-processing, segmentation and post-processing. The pre-processing stage enhanced the image using contrast limited adaptive histogram equalization and 2D Gabor wavelet. The enhanced image is segmented using geodesic operators and a final segmentation output is obtained by applying a post-processing stage that involves hole filling and removal of isolated pixels. The performance of the proposed method is evaluated on the publicly available Digital retinal images for vessel extraction (DRIVE) and High-resolution fundus (HRF) databases using five different measurements and experimental analysis shows that the proposed method reach an average accuracy of 0.9541 on DRIVE database and 0.9568, 0.9478 and 0.9613 on HRF database with healthy, diabetic retinopathy (DR) and glaucomatous images respectively.