整数多边形的自然矩阵

Joseph E. Bonin, C. Chun, Tara Fife
{"title":"整数多边形的自然矩阵","authors":"Joseph E. Bonin, C. Chun, Tara Fife","doi":"10.1137/22m1521122","DOIUrl":null,"url":null,"abstract":"The natural matroid of an integer polymatroid was introduced to show that a simple construction of integer polymatroids from matroids yields all integer polymatroids. As we illustrate, the natural matroid can shed much more light on integer polymatroids. We focus on characterizations of integer polymatroids using their bases, their circuits, and their cyclic flats along with the rank of each cyclic flat and each element; we offer some new characterizations and insights into known characterizations.","PeriodicalId":21749,"journal":{"name":"SIAM J. Discret. Math.","volume":"15 1","pages":"1751-1770"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Natural Matroid of an Integer Polymatroid\",\"authors\":\"Joseph E. Bonin, C. Chun, Tara Fife\",\"doi\":\"10.1137/22m1521122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The natural matroid of an integer polymatroid was introduced to show that a simple construction of integer polymatroids from matroids yields all integer polymatroids. As we illustrate, the natural matroid can shed much more light on integer polymatroids. We focus on characterizations of integer polymatroids using their bases, their circuits, and their cyclic flats along with the rank of each cyclic flat and each element; we offer some new characterizations and insights into known characterizations.\",\"PeriodicalId\":21749,\"journal\":{\"name\":\"SIAM J. Discret. Math.\",\"volume\":\"15 1\",\"pages\":\"1751-1770\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM J. Discret. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1521122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Discret. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1521122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

引入整数多边形的自然矩阵,证明了由拟阵构造整数多边形的简单方法可以得到所有的整数多边形。正如我们所说明的那样,自然矩阵可以揭示更多关于整数多矩阵的信息。我们重点讨论了整数多拟阵的基、回路、循环平面以及每个循环平面和每个元素的秩的刻画;我们提供了一些新的特征和对已知特征的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Natural Matroid of an Integer Polymatroid
The natural matroid of an integer polymatroid was introduced to show that a simple construction of integer polymatroids from matroids yields all integer polymatroids. As we illustrate, the natural matroid can shed much more light on integer polymatroids. We focus on characterizations of integer polymatroids using their bases, their circuits, and their cyclic flats along with the rank of each cyclic flat and each element; we offer some new characterizations and insights into known characterizations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信