{"title":"整数多边形的自然矩阵","authors":"Joseph E. Bonin, C. Chun, Tara Fife","doi":"10.1137/22m1521122","DOIUrl":null,"url":null,"abstract":"The natural matroid of an integer polymatroid was introduced to show that a simple construction of integer polymatroids from matroids yields all integer polymatroids. As we illustrate, the natural matroid can shed much more light on integer polymatroids. We focus on characterizations of integer polymatroids using their bases, their circuits, and their cyclic flats along with the rank of each cyclic flat and each element; we offer some new characterizations and insights into known characterizations.","PeriodicalId":21749,"journal":{"name":"SIAM J. Discret. Math.","volume":"15 1","pages":"1751-1770"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Natural Matroid of an Integer Polymatroid\",\"authors\":\"Joseph E. Bonin, C. Chun, Tara Fife\",\"doi\":\"10.1137/22m1521122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The natural matroid of an integer polymatroid was introduced to show that a simple construction of integer polymatroids from matroids yields all integer polymatroids. As we illustrate, the natural matroid can shed much more light on integer polymatroids. We focus on characterizations of integer polymatroids using their bases, their circuits, and their cyclic flats along with the rank of each cyclic flat and each element; we offer some new characterizations and insights into known characterizations.\",\"PeriodicalId\":21749,\"journal\":{\"name\":\"SIAM J. Discret. Math.\",\"volume\":\"15 1\",\"pages\":\"1751-1770\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM J. Discret. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1521122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Discret. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1521122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The natural matroid of an integer polymatroid was introduced to show that a simple construction of integer polymatroids from matroids yields all integer polymatroids. As we illustrate, the natural matroid can shed much more light on integer polymatroids. We focus on characterizations of integer polymatroids using their bases, their circuits, and their cyclic flats along with the rank of each cyclic flat and each element; we offer some new characterizations and insights into known characterizations.