分布式内存轨迹分析系统

Zeyuan Shang, Guoliang Li, Z. Bao
{"title":"分布式内存轨迹分析系统","authors":"Zeyuan Shang, Guoliang Li, Z. Bao","doi":"10.1145/3183713.3193553","DOIUrl":null,"url":null,"abstract":"Trajectory analytics can benefit many real-world applications, e.g., frequent trajectory based navigation systems, road planning, car pooling, and transportation optimizations. In this paper, we demonstrate a distributed in-memory trajectory analytics system DITA to support large-scale trajectory data analytics. DITA exhibit three unique features. First, DITA supports threshold-based and KNN-based trajectory similarity search and join operations, as well as range queries (i.e., space and time). Second, DITA is versatile to support most existing similarity functions to cater for different analytic purposes and scenarios. Last, DITA is seamlessly integrated into Spark SQL to support easy-to-use SQL and DataFrame API interfaces. Technically, DITA proposes an effective partitioning method, global index and local index, to address the data locality problem. It also devises cost-based techniques to balance the workload, and develops a filter-verification framework for efficient and scalable search and join.","PeriodicalId":20430,"journal":{"name":"Proceedings of the 2018 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"DITA: A Distributed In-Memory Trajectory Analytics System\",\"authors\":\"Zeyuan Shang, Guoliang Li, Z. Bao\",\"doi\":\"10.1145/3183713.3193553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trajectory analytics can benefit many real-world applications, e.g., frequent trajectory based navigation systems, road planning, car pooling, and transportation optimizations. In this paper, we demonstrate a distributed in-memory trajectory analytics system DITA to support large-scale trajectory data analytics. DITA exhibit three unique features. First, DITA supports threshold-based and KNN-based trajectory similarity search and join operations, as well as range queries (i.e., space and time). Second, DITA is versatile to support most existing similarity functions to cater for different analytic purposes and scenarios. Last, DITA is seamlessly integrated into Spark SQL to support easy-to-use SQL and DataFrame API interfaces. Technically, DITA proposes an effective partitioning method, global index and local index, to address the data locality problem. It also devises cost-based techniques to balance the workload, and develops a filter-verification framework for efficient and scalable search and join.\",\"PeriodicalId\":20430,\"journal\":{\"name\":\"Proceedings of the 2018 International Conference on Management of Data\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3183713.3193553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183713.3193553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

轨迹分析可以使许多现实世界的应用受益,例如,基于频繁轨迹的导航系统、道路规划、拼车和交通优化。在本文中,我们展示了一个分布式内存中的轨迹分析系统DITA,以支持大规模的轨迹数据分析。DITA有三个独特的特点。首先,DITA支持基于阈值和基于knn的轨迹相似性搜索和连接操作,以及范围查询(即空间和时间)。其次,DITA是通用的,可以支持大多数现有的相似性函数,以满足不同的分析目的和场景。最后,DITA无缝集成到Spark SQL中,以支持易于使用的SQL和DataFrame API接口。在技术上,DITA提出了一种有效的分区方法:全局索引和局部索引,以解决数据局部性问题。它还设计了基于成本的技术来平衡工作负载,并开发了一个过滤器验证框架,以实现高效和可扩展的搜索和连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DITA: A Distributed In-Memory Trajectory Analytics System
Trajectory analytics can benefit many real-world applications, e.g., frequent trajectory based navigation systems, road planning, car pooling, and transportation optimizations. In this paper, we demonstrate a distributed in-memory trajectory analytics system DITA to support large-scale trajectory data analytics. DITA exhibit three unique features. First, DITA supports threshold-based and KNN-based trajectory similarity search and join operations, as well as range queries (i.e., space and time). Second, DITA is versatile to support most existing similarity functions to cater for different analytic purposes and scenarios. Last, DITA is seamlessly integrated into Spark SQL to support easy-to-use SQL and DataFrame API interfaces. Technically, DITA proposes an effective partitioning method, global index and local index, to address the data locality problem. It also devises cost-based techniques to balance the workload, and develops a filter-verification framework for efficient and scalable search and join.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信