最小时间危机问题的惩罚函数法

Kenza Boumaza, T. Bayen, Alain Rapaport
{"title":"最小时间危机问题的惩罚函数法","authors":"Kenza Boumaza, T. Bayen, Alain Rapaport","doi":"10.1051/proc/202171103","DOIUrl":null,"url":null,"abstract":"In this note, we propose a new method to approximate the minimal time crisis problem using an auxiliary control and a penalty function, and show its convergence to a solution to the original problem. The interest of this approach is illustrated on numerical examples for which optimal trajectories can leave and enter the crisis set tangentially.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"155 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Penalty function method for the minimal time crisis problem\",\"authors\":\"Kenza Boumaza, T. Bayen, Alain Rapaport\",\"doi\":\"10.1051/proc/202171103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, we propose a new method to approximate the minimal time crisis problem using an auxiliary control and a penalty function, and show its convergence to a solution to the original problem. The interest of this approach is illustrated on numerical examples for which optimal trajectories can leave and enter the crisis set tangentially.\",\"PeriodicalId\":53260,\"journal\":{\"name\":\"ESAIM Proceedings and Surveys\",\"volume\":\"155 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESAIM Proceedings and Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/proc/202171103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM Proceedings and Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/proc/202171103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种利用辅助控制和惩罚函数逼近最小时间危机问题的新方法,并证明了该方法收敛于原问题的解。数值例子说明了这种方法的有趣之处,其中最优轨迹可以切线离开和进入危机集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Penalty function method for the minimal time crisis problem
In this note, we propose a new method to approximate the minimal time crisis problem using an auxiliary control and a penalty function, and show its convergence to a solution to the original problem. The interest of this approach is illustrated on numerical examples for which optimal trajectories can leave and enter the crisis set tangentially.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信