{"title":"随机波动和随机利率下的最优投资组合选择","authors":"Mi-Hyun Kim, Jeong‐Hoon Kim, Ji‐Hun Yoon","doi":"10.12941/JKSIAM.2015.19.417","DOIUrl":null,"url":null,"abstract":"Although, in general, the random fluctuation of interest rates gives a limited impact on portfolio optimization, their stochastic nature may exert a significant influence on the process of selecting the proportions of various assets to be held in a given portfolio when the stochastic volatility of risky assets is considered. The stochastic volatility covers a variety of known models to fit in with diverse economic environments. In this paper, an optimal strategy for portfolio selection as well as the smoothness properties of the relevant value function are studied with the dynamic programming method under a market model of both stochastic volatility and stochastic interest rates.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"15 1","pages":"417-428"},"PeriodicalIF":0.3000,"publicationDate":"2015-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"OPTIMAL PORTFOLIO SELECTION UNDER STOCHASTIC VOLATILITY AND STOCHASTIC INTEREST RATES\",\"authors\":\"Mi-Hyun Kim, Jeong‐Hoon Kim, Ji‐Hun Yoon\",\"doi\":\"10.12941/JKSIAM.2015.19.417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although, in general, the random fluctuation of interest rates gives a limited impact on portfolio optimization, their stochastic nature may exert a significant influence on the process of selecting the proportions of various assets to be held in a given portfolio when the stochastic volatility of risky assets is considered. The stochastic volatility covers a variety of known models to fit in with diverse economic environments. In this paper, an optimal strategy for portfolio selection as well as the smoothness properties of the relevant value function are studied with the dynamic programming method under a market model of both stochastic volatility and stochastic interest rates.\",\"PeriodicalId\":41717,\"journal\":{\"name\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"volume\":\"15 1\",\"pages\":\"417-428\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2015-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12941/JKSIAM.2015.19.417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2015.19.417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
OPTIMAL PORTFOLIO SELECTION UNDER STOCHASTIC VOLATILITY AND STOCHASTIC INTEREST RATES
Although, in general, the random fluctuation of interest rates gives a limited impact on portfolio optimization, their stochastic nature may exert a significant influence on the process of selecting the proportions of various assets to be held in a given portfolio when the stochastic volatility of risky assets is considered. The stochastic volatility covers a variety of known models to fit in with diverse economic environments. In this paper, an optimal strategy for portfolio selection as well as the smoothness properties of the relevant value function are studied with the dynamic programming method under a market model of both stochastic volatility and stochastic interest rates.