有限阿贝尔群的直积

A. T. G.
{"title":"有限阿贝尔群的直积","authors":"A. T. G.","doi":"10.56293/ijasr.2022.5443","DOIUrl":null,"url":null,"abstract":"In this project, finite abelian groups with some theoretical and algebraic structures are considered. The order of each group is factorized completely with factor of higher multiplicity where necessary. This unique factorization will allow for a way of building new groups and understanding a given group better. Essentially, it provides a way of relating the given group to the direct products of some of its subgroups. Finally, it also reveals how a group of a finite order is isomorphically related to one of the direct products satisfying certain relatively prime condition.","PeriodicalId":13763,"journal":{"name":"International Journal of Applied Science and Engineering Research","volume":"22 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct Product of Finite Abelian Group\",\"authors\":\"A. T. G.\",\"doi\":\"10.56293/ijasr.2022.5443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this project, finite abelian groups with some theoretical and algebraic structures are considered. The order of each group is factorized completely with factor of higher multiplicity where necessary. This unique factorization will allow for a way of building new groups and understanding a given group better. Essentially, it provides a way of relating the given group to the direct products of some of its subgroups. Finally, it also reveals how a group of a finite order is isomorphically related to one of the direct products satisfying certain relatively prime condition.\",\"PeriodicalId\":13763,\"journal\":{\"name\":\"International Journal of Applied Science and Engineering Research\",\"volume\":\"22 3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Science and Engineering Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56293/ijasr.2022.5443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Science and Engineering Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56293/ijasr.2022.5443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这个项目中,考虑了具有一些理论结构和代数结构的有限阿贝尔群。每一组的顺序在必要时用更高的倍数完全分解。这种独特的分解将提供一种构建新组和更好地理解给定组的方法。本质上,它提供了一种将给定群与它的一些子群的直接乘积联系起来的方法。最后,还揭示了有限阶的群与满足一定相对素数条件的一个直接积的同构关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct Product of Finite Abelian Group
In this project, finite abelian groups with some theoretical and algebraic structures are considered. The order of each group is factorized completely with factor of higher multiplicity where necessary. This unique factorization will allow for a way of building new groups and understanding a given group better. Essentially, it provides a way of relating the given group to the direct products of some of its subgroups. Finally, it also reveals how a group of a finite order is isomorphically related to one of the direct products satisfying certain relatively prime condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信