二进制二次型和整数幂的和

IF 0.3 Q4 MATHEMATICS
J. Cereceda
{"title":"二进制二次型和整数幂的和","authors":"J. Cereceda","doi":"10.33039/ami.2020.02.002","DOIUrl":null,"url":null,"abstract":"In this methodological paper, we first review the classic cubic Diophantine equation $a^3 + b^3 + c^3 = d^3$, and consider the specific class of solutions $q_1^3 + q_2^3 + q_3^3 = q_4^3$ with each $q_i$ being a binary quadratic form. Next we turn our attention to the familiar sums of powers of the first $n$ positive integers, $S_k = 1^k + 2^k + \\cdots + n^k$, and express the squares $S_k^2$, $S_m^2$, and the product $S_k S_m$ as a linear combination of power sums. These expressions, along with the above quadratic-form solution for the cubic equation, allows one to generate an infinite number of relations of the form $Q_1^3 + Q_2^3 + Q_3^3 = Q_4^3$, with each $Q_i$ being a linear combination of power sums. Also, we briefly consider the quadratic Diophantine equations $a^2 + b^2 + c^2 = d^2$ and $a^2 + b^2 = c^2$, and give a family of corresponding solutions $Q_1^2 + Q_2^2 + Q_3^2 = Q_4^2$ and $Q_1^2 + Q_2^2 = Q_3^2$ in terms of sums of powers of integers.","PeriodicalId":43454,"journal":{"name":"Annales Mathematicae et Informaticae","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Binary quadratic forms and sums of powersof integers\",\"authors\":\"J. Cereceda\",\"doi\":\"10.33039/ami.2020.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this methodological paper, we first review the classic cubic Diophantine equation $a^3 + b^3 + c^3 = d^3$, and consider the specific class of solutions $q_1^3 + q_2^3 + q_3^3 = q_4^3$ with each $q_i$ being a binary quadratic form. Next we turn our attention to the familiar sums of powers of the first $n$ positive integers, $S_k = 1^k + 2^k + \\\\cdots + n^k$, and express the squares $S_k^2$, $S_m^2$, and the product $S_k S_m$ as a linear combination of power sums. These expressions, along with the above quadratic-form solution for the cubic equation, allows one to generate an infinite number of relations of the form $Q_1^3 + Q_2^3 + Q_3^3 = Q_4^3$, with each $Q_i$ being a linear combination of power sums. Also, we briefly consider the quadratic Diophantine equations $a^2 + b^2 + c^2 = d^2$ and $a^2 + b^2 = c^2$, and give a family of corresponding solutions $Q_1^2 + Q_2^2 + Q_3^2 = Q_4^2$ and $Q_1^2 + Q_2^2 = Q_3^2$ in terms of sums of powers of integers.\",\"PeriodicalId\":43454,\"journal\":{\"name\":\"Annales Mathematicae et Informaticae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae et Informaticae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33039/ami.2020.02.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae et Informaticae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33039/ami.2020.02.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇方法学论文中,我们首先回顾了经典的三次丢芬图方程$a^3 + b^3 + c^3 = d^3$,并考虑了一类特殊的解$q_1^3 + q_2^3 + q_3^3 = q_4^3$,每个$q_i$都是二元二次型。接下来,我们将注意力转向熟悉的前n个正整数的幂和,$S_k = 1^k + 2^k + cdots + n^k$,并将平方$S_k^2$, $S_m^2$和乘积$S_k S_m$表示为幂和的线性组合。这些表达式,与上述三次方程的二次解一起,允许我们生成无限个形式为$Q_1^3 + Q_2^3 + Q_3^3 = Q_4^3$的关系,其中每个$Q_i$是幂和的线性组合。同时,我们简要地考虑了二次丢芬图方程$a^2 + b^2 + c^2 = d^2$和$a^2 + b^2 = c^2$,并给出了$Q_1^2 + Q_2^2 + Q_3^2 = Q_4^2$和$Q_1^2 + Q_2^2 = Q_3^2$的整数幂和形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Binary quadratic forms and sums of powersof integers
In this methodological paper, we first review the classic cubic Diophantine equation $a^3 + b^3 + c^3 = d^3$, and consider the specific class of solutions $q_1^3 + q_2^3 + q_3^3 = q_4^3$ with each $q_i$ being a binary quadratic form. Next we turn our attention to the familiar sums of powers of the first $n$ positive integers, $S_k = 1^k + 2^k + \cdots + n^k$, and express the squares $S_k^2$, $S_m^2$, and the product $S_k S_m$ as a linear combination of power sums. These expressions, along with the above quadratic-form solution for the cubic equation, allows one to generate an infinite number of relations of the form $Q_1^3 + Q_2^3 + Q_3^3 = Q_4^3$, with each $Q_i$ being a linear combination of power sums. Also, we briefly consider the quadratic Diophantine equations $a^2 + b^2 + c^2 = d^2$ and $a^2 + b^2 = c^2$, and give a family of corresponding solutions $Q_1^2 + Q_2^2 + Q_3^2 = Q_4^2$ and $Q_1^2 + Q_2^2 = Q_3^2$ in terms of sums of powers of integers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信