{"title":"初始数据控制问题中广义Boussinesq方程Cauchy问题的全局适定性","authors":"Xiaoqiang Dai, Shaohua Chen","doi":"10.3934/dcdss.2021114","DOIUrl":null,"url":null,"abstract":"The Cauchy problem of one dimensional generalized Boussinesq equation is treated by the approach of variational method in order to realize the control aim, which is the control problem reflecting the relationship between initial data and global dynamics of solution. For a class of more general nonlinearities we classify the initial data for the global solution and finite time blowup solution. The results generalize some existing conclusions related this problem.","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"304 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global well-posedness for the Cauchy problem of generalized Boussinesq equations in the control problem regarding initial data\",\"authors\":\"Xiaoqiang Dai, Shaohua Chen\",\"doi\":\"10.3934/dcdss.2021114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Cauchy problem of one dimensional generalized Boussinesq equation is treated by the approach of variational method in order to realize the control aim, which is the control problem reflecting the relationship between initial data and global dynamics of solution. For a class of more general nonlinearities we classify the initial data for the global solution and finite time blowup solution. The results generalize some existing conclusions related this problem.\",\"PeriodicalId\":11254,\"journal\":{\"name\":\"Discrete & Continuous Dynamical Systems - S\",\"volume\":\"304 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Continuous Dynamical Systems - S\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcdss.2021114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcdss.2021114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Global well-posedness for the Cauchy problem of generalized Boussinesq equations in the control problem regarding initial data
The Cauchy problem of one dimensional generalized Boussinesq equation is treated by the approach of variational method in order to realize the control aim, which is the control problem reflecting the relationship between initial data and global dynamics of solution. For a class of more general nonlinearities we classify the initial data for the global solution and finite time blowup solution. The results generalize some existing conclusions related this problem.