{"title":"考虑电流约束的五相永磁同步轮毂电机容错模型预测电流控制","authors":"Zhou Shi, Xiaodong Sun, Yanling Liu, Weiqi Zhou","doi":"10.1109/VPPC49601.2020.9330833","DOIUrl":null,"url":null,"abstract":"To improve the stability of hub drive electric vehicle, the fault-tolerant control algorithm of five-phase permanent-magnet synchronous motor is studied in this paper. A Model predicate current control (MPCC) algorithm with pre-selection and duty cycle is designed for 5-phase PMSHM in different operations. The model of 5-phase PMSHM in fault operations is discussed and coordinate transformation matrix in single-fault, adjacent two phases fault, and nonadjacent two phases fault operations are deduced, respectively. The proposed fault-tolerant model predictive current control can deal with a difference of current fault operations, effectively. Thus, the stability of the hub drive system is improved.","PeriodicalId":6851,"journal":{"name":"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"138 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fault-Tolerant Model Predictive Current Control of Five-Phase Permanent Magnet Synchronous Hub Motor Considering Current Constraints\",\"authors\":\"Zhou Shi, Xiaodong Sun, Yanling Liu, Weiqi Zhou\",\"doi\":\"10.1109/VPPC49601.2020.9330833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the stability of hub drive electric vehicle, the fault-tolerant control algorithm of five-phase permanent-magnet synchronous motor is studied in this paper. A Model predicate current control (MPCC) algorithm with pre-selection and duty cycle is designed for 5-phase PMSHM in different operations. The model of 5-phase PMSHM in fault operations is discussed and coordinate transformation matrix in single-fault, adjacent two phases fault, and nonadjacent two phases fault operations are deduced, respectively. The proposed fault-tolerant model predictive current control can deal with a difference of current fault operations, effectively. Thus, the stability of the hub drive system is improved.\",\"PeriodicalId\":6851,\"journal\":{\"name\":\"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)\",\"volume\":\"138 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VPPC49601.2020.9330833\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC49601.2020.9330833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fault-Tolerant Model Predictive Current Control of Five-Phase Permanent Magnet Synchronous Hub Motor Considering Current Constraints
To improve the stability of hub drive electric vehicle, the fault-tolerant control algorithm of five-phase permanent-magnet synchronous motor is studied in this paper. A Model predicate current control (MPCC) algorithm with pre-selection and duty cycle is designed for 5-phase PMSHM in different operations. The model of 5-phase PMSHM in fault operations is discussed and coordinate transformation matrix in single-fault, adjacent two phases fault, and nonadjacent two phases fault operations are deduced, respectively. The proposed fault-tolerant model predictive current control can deal with a difference of current fault operations, effectively. Thus, the stability of the hub drive system is improved.